{
  localUrl: '../page/451.html',
  arbitalUrl: 'https://arbital.com/p/451',
  rawJsonUrl: '../raw/451.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: '451',
  edit: '1',
  editSummary: '',
  prevEdit: '0',
  currentEdit: '1',
  wasPublished: 'true',
  type: 'comment',
  title: '"Had to re-read this twice. ..."',
  clickbait: '',
  textLength: '54',
  alias: '451',
  externalUrl: '',
  sortChildrenBy: 'recentFirst',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'AlexeiAndreev',
  editCreatedAt: '2016-06-10 01:06:01',
  pageCreatorId: 'AlexeiAndreev',
  pageCreatedAt: '2016-06-10 01:06:01',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'true',
  isApprovedComment: 'true',
  isResolved: 'true',
  snapshotText: '',
  anchorContext: 'However, it becomes more worth it the more 10\\-digits we're splitting\\. You might expect that, when splitting three digit wheels, we'd each get one digit wheel plus a 3\\-message \\(on the third wheel\\)\\. However, we can actually do better than that\\! If you pick a number $a$ between 0 and 30 \\(for a total of 31 different possibilities\\), and I pick a number $b$ between 0 and 30, then the number $31a + b$ can always be stored on 3 digit wheels \\(because it's always less than $31\\cdot 30 + 30 = 960$\\), so if we're splitting three digit wheels, we can actually eek out one "pseudo 31\\-digit" each\\. This still isn't maximally efficient \\(the values from 961 to 999 are wasted\\), but it's a little better\\. And if we split five digit wheels, we each get to use one 316\\-digit \\(as you can verify\\)\\.',
  anchorText: 'However, it becomes more worth it the more 10\\-digits we're splitting\\. You might expect that, when splitting three digit wheels, we'd each get one digit wheel plus a 3\\-message \\(on the third wheel\\)\\. However, we can actually do better than that\\! If you pick a number $a$ between 0 and 30 \\(for a total of 31 different possibilities\\), and I pick a number $b$ between 0 and 30, then the number $31a + b$ can always be stored on 3 digit wheels \\(because it's always less than $31\\cdot 30 + 30 = 960$\\), so if we're splitting three digit wheels, we can actually eek out one "pseudo 31\\-digit" each\\. This still isn't maximally efficient \\(the values from 961 to 999 are wasted\\), but it's a little better\\. And if we split five digit wheels, we each get to use one 316\\-digit \\(as you can verify\\)\\.',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '323',
  text: 'Had to re-read this twice. Not sure if I fully got it.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'AlexeiAndreev'
  ],
  childIds: [],
  parentIds: [
    'fractional_digits'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12254',
      pageId: '451',
      userId: 'AlexeiAndreev',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-10 01:06:01',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12253',
      pageId: '451',
      userId: 'AlexeiAndreev',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-06-10 01:05:46',
      auxPageId: 'fractional_digits',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}