{
localUrl: '../page/5gd.html',
arbitalUrl: 'https://arbital.com/p/5gd',
rawJsonUrl: '../raw/5gd.json',
likeableId: '3139',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'KevinClancy'
],
pageId: '5gd',
edit: '1',
editSummary: '',
prevEdit: '0',
currentEdit: '1',
wasPublished: 'true',
type: 'comment',
title: '"I think it would be worthwhile to explicitly ca..."',
clickbait: '',
textLength: '145',
alias: '5gd',
externalUrl: '',
sortChildrenBy: 'recentFirst',
hasVote: 'false',
voteType: '',
editCreatedAt: '2016-07-18 01:29:05',
pageCreatedAt: '2016-07-18 01:29:05',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'true',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: 'We'll do an example to build our intuition before giving the proper definition of the principle\\. We'll provide yet another proof that\n$$1 + 2 + \\cdots + n = \\frac{n(n+1)}{2}$$\nfor all integers $n \\ge 1$\\. First, let's check the base case, where $n=1$:\n$$1 = \\frac{1(1+1)}{2} = \\frac{2}{2} = 1.$$\nThis is \$$fairly obviously\$$ true, so we can move forward with the inductive step\\. The inductive step includes an assumption, namely that the statement is true for some integer $k$ that is larger than the base integer\\. For our example, if $k\\ge1$, we assume that\n$$1 + 2 + \\cdots + k = \\frac{k(k+1)}{2}$$\nand try to prove that\n$$1 + 2 + \\cdots + k + (k+1) = \\frac{(k+1)([k+1]+1)}{2}.$$\nTake our assumption and add $k+1$ to both sides:\n$$1+2+\\cdots + k + (k+1) = \\frac{k(k+1)}{2} + k + 1.$$\nNow the left\\-hand sides of what we know and what we want are the same\\. Hopefully the right\\-hand side will shake out to be the same\\. Get common denominators so that the right\\-hand side of the above equation is\n$$\\frac{k(k+1)}{2} + \\frac{2(k+1)}{2} = \\frac{(k+2)(k+1)}{2} = \\frac{(k+1)([k+1]+1)}{2}.$$\nTherefore,\n$$1 + 2 + \\cdots + k + (k+1) = \\frac{(k+1)([k+1]+1)}{2}$$\nas desired\\.',
anchorText: 'and try to prove that',
anchorOffset: '606',
mergedInto: '',
isDeleted: 'false',
viewCount: '261',
text: 'I think it would be worthwhile to explicitly call out that what's happening here is that we're replacing $n$ in the original equation with $k+1$.',
metaText: '',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
],
childIds: [],
parentIds: [
'mathematical_induction'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
commentCount: '0',
newCommentCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17068',
pageId: '5gd',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-18 01:29:05',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}