{ localUrl: '../page/ackermann_function.html', arbitalUrl: 'https://arbital.com/p/ackermann_function', rawJsonUrl: '../raw/43x.json', likeableId: '2616', likeableType: 'page', myLikeValue: '0', likeCount: '5', dislikeCount: '0', likeScore: '5', individualLikes: [ 'EricBruylant', 'VladArber', 'JaimeSevillaMolina', 'EricRogstad', 'StephanieZolayvar' ], pageId: 'ackermann_function', edit: '6', editSummary: '', prevEdit: '5', currentEdit: '6', wasPublished: 'true', type: 'wiki', title: 'Ackermann function', clickbait: 'The slowest-growing fast-growing function.', textLength: '2489', alias: 'ackermann_function', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'NateSoares', editCreatedAt: '2016-06-10 16:56:04', pageCreatorId: 'AlexAppel', pageCreatedAt: '2016-06-09 01:58:58', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '100', text: 'The Ackermann function works as follows:\n\nOne may have noticed that addition, multiplication, and exponentiation seem to increase in "power", that is, when pitted against each other, it is easier to produce enormous numbers with exponentiation than with multiplication, and so on.\n\nThe Ackermann function produces a hierarchy of such growth operations, and ascends one step higher in the hierarchy each time.\n\nAddition is the first operator in the hierarchy (though if we wanted, we could define [-addition_as_repeated_succession] and declare addition the second operator in the hierarchy). The next operator in the hierarchy is produced by iterating the previous element in the hierarchy. For instance, the next few operators in the hierarchy are multiplication, exponentiation, and tetration:\n\nMultiplication is iterated addition: $A \\cdot B = \\underbrace{A + A + \\ldots A}_{B \\text{ copies of } A}$\n\nExponentiation is iterated multiplication: $A^B = \\underbrace{A \\times A \\times \\ldots A}_{B \\text{ copies of } A}$.\n\n($A ^ B$ is written $A \\uparrow B$ in [knuth_up_arrow_notation].)\n\nTetration is iterated exponentiation. $A \\uparrow\\uparrow B = \\underbrace{A^{A^{\\ldots^A}}}_{B \\text{ copies of } A}$ times.\n\n$\\uparrow^n$ just means $n$ up arrows, so we can also write tetration as: $A \\uparrow^2 B = \\underbrace{A \\uparrow^1 (A \\uparrow^1 (\\ldots A))}_{B \\text{ copies of } A}$\n\nNow the pattern can be noticed and generalized, following the rule: $A \\uparrow^n B = \\underbrace{A \\uparrow^{n-1} (A \\uparrow^{n-1} (\\ldots A))}_{B \\text{ copies of } A}$\n\nAnd now we can define the Ackermann function as $A(n) = n \\uparrow^n n$.\n\nThis definition is relatively small, but the functions grow at incredible rates. [Wait But Why](http://waitbutwhy.com/2014/11/1000000-grahams-number.html) has a good intuitive description of how incredibly fast tetration, pentation, and hexation grow, but by the time we get to $A(6)$, the Ackermann function already grows far more quickly than that. $A(1)=1$, $A(2)=4$, and $A(3)$ cannot be written in the universe, as it has enormously more digits than our universe has subatomic particles.\n\nInterestingly enough, the Ackermann function grows faster than all primitive recursive functions. This is related to a rather deep connection between the consistency strength of a mathematical theory (which sorts of results they are capable of proving) and the slowest-growing function for which the theory cannot prove "this function is defined on all integers."', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '2', maintainerCount: '2', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'AlexAppel', 'ChrisBarnett', 'EricRogstad', 'NateSoares' ], childIds: [], parentIds: [ 'function' ], commentIds: [ '44f', '44g' ], questionIds: [], tagIds: [ 'start_meta_tag', 'needs_summary_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18951', pageId: 'ackermann_function', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-08-20 12:59:01', auxPageId: 'start_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18950', pageId: 'ackermann_function', userId: 'EricBruylant', edit: '0', type: 'deleteParent', createdAt: '2016-08-20 12:57:15', auxPageId: 'math', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18948', pageId: 'ackermann_function', userId: 'EricBruylant', edit: '0', type: 'newParent', createdAt: '2016-08-20 12:57:14', auxPageId: 'function', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '2628', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '12341', pageId: 'ackermann_function', userId: 'NateSoares', edit: '6', type: 'newEdit', createdAt: '2016-06-10 16:56:04', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12193', pageId: 'ackermann_function', userId: 'AlexeiAndreev', edit: '0', type: 'newAlias', createdAt: '2016-06-09 17:38:16', auxPageId: '', oldSettingsValue: 'ackerman_function', newSettingsValue: 'ackermann_function' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12152', pageId: 'ackermann_function', userId: 'EricRogstad', edit: '5', type: 'newTag', createdAt: '2016-06-09 07:58:37', auxPageId: 'needs_summary_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12150', pageId: 'ackermann_function', userId: 'EricRogstad', edit: '5', type: 'newEdit', createdAt: '2016-06-09 07:56:15', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12144', pageId: 'ackermann_function', userId: 'ChrisBarnett', edit: '4', type: 'newEdit', createdAt: '2016-06-09 03:25:47', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12143', pageId: 'ackermann_function', userId: 'ChrisBarnett', edit: '3', type: 'newEdit', createdAt: '2016-06-09 03:25:39', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12142', pageId: 'ackermann_function', userId: 'ChrisBarnett', edit: '2', type: 'newParent', createdAt: '2016-06-09 03:20:43', auxPageId: 'math', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12139', pageId: 'ackermann_function', userId: 'AlexAppel', edit: '2', type: 'newEdit', createdAt: '2016-06-09 01:59:49', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12138', pageId: 'ackermann_function', userId: 'AlexAppel', edit: '1', type: 'newEdit', createdAt: '2016-06-09 01:58:58', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }