{ localUrl: '../page/axiom_of_choice_definition_intuitive.html', arbitalUrl: 'https://arbital.com/p/axiom_of_choice_definition_intuitive', rawJsonUrl: '../raw/6cb.json', likeableId: '0', likeableType: 'page', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], pageId: 'axiom_of_choice_definition_intuitive', edit: '1', editSummary: '', prevEdit: '0', currentEdit: '1', wasPublished: 'true', type: 'wiki', title: 'Axiom of Choice Definition (Intuitive)', clickbait: 'Definition of the Axiom of Choice, without using heavy mathematical notation.', textLength: '2364', alias: 'axiom_of_choice_definition_intuitive', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'MarkChimes', editCreatedAt: '2016-10-10 21:11:14', pageCreatorId: 'MarkChimes', pageCreatedAt: '2016-10-10 21:11:14', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '48', text: '#Getting the Heavy Maths out the Way: Definitions#\nIntuitively, the [-axiom_mathematics axiom] of choice states that, given a collection of *[-5zc non-empty]* [-3jz sets], there is a [-3jy function] which selects a single element from each of the sets. \n\nMore formally, given a set $X$ whose [-5xy elements] are only non-empty sets, there is a function \n$$\nf: X \\rightarrow \\bigcup_{Y \\in X} Y \n$$\nfrom $X$ to the [-5s8 union] of all the elements of $X$ such that, for each $Y \\in X$, the [-3lh image] of $Y$ under $f$ is an element of $Y$, i.e., $f(Y) \\in Y$. \n\nIn [-logical_notation logical notation],\n$$\n\\forall_X \n\\left( \n\\left[\\forall_{Y \\in X} Y \\not= \\emptyset \\right] \n\\Rightarrow \n\\left[\\exists \n\\left( f: X \\rightarrow \\bigcup_{Y \\in X} Y \\right)\n\\left(\\forall_{Y \\in X} \n\\exists_{y \\in Y} f(Y) = y \\right) \\right]\n\\right)\n$$\n\n#Axiom Unnecessary for Finite Collections of Sets#\nFor a [-5zy finite set] $X$ containing only [-5zy finite] non-empty sets, the axiom is actually provable (from the [-zermelo_fraenkel_axioms Zermelo-Fraenkel axioms] of set theory ZF), and hence does not need to be given as an [-axiom_mathematics axiom]. In fact, even for a finite collection of possibly infinite non-empty sets, the axiom of choice is provable (from ZF), using the [-axiom_of_induction axiom of induction]. In this case, the function can be explicitly described. For example, if the set $X$ contains only three, potentially infinite, non-empty sets $Y_1, Y_2, Y_3$, then the fact that they are non-empty means they each contain at least one element, say $y_1 \\in Y_1, y_2 \\in Y_2, y_3 \\in Y_3$. Then define $f$ by $f(Y_1) = y_1$, $f(Y_2) = y_2$ and $f(Y_3) = y_3$. This construction is permitted by the axioms ZF.\n\nThe problem comes in if $X$ contains an infinite number of non-empty sets. Let's assume $X$ contains a [-2w0 countable] number of sets $Y_1, Y_2, Y_3, \\ldots$. Then, again intuitively speaking, we can explicitly describe how $f$ might act on finitely many of the $Y$s (say the first $n$ for any natural number $n$), but we cannot describe it on all of them at once. \n\nTo understand this properly, one must understand what it means to be able to 'describe' or 'construct' a function $f$. This is described in more detail in the sections which follow. But first, a bit of background on why the axiom of choice is interesting to mathematicians.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'MarkChimes' ], childIds: [], parentIds: [ 'axiom_of_choice', 'axiom_of_choice_definition_mathematical' ], commentIds: [], questionIds: [], tagIds: [ 'axiom_of_choice_definition_mathematical' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: 'axiom_of_choice_definition_mathematical', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20024', pageId: 'axiom_of_choice_definition_intuitive', userId: 'MarkChimes', edit: '0', type: 'newParent', createdAt: '2016-10-10 21:11:28', auxPageId: 'axiom_of_choice_definition_mathematical', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20021', pageId: 'axiom_of_choice_definition_intuitive', userId: 'MarkChimes', edit: '0', type: 'newParent', createdAt: '2016-10-10 21:11:15', auxPageId: 'axiom_of_choice', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20022', pageId: 'axiom_of_choice_definition_intuitive', userId: 'MarkChimes', edit: '0', type: 'newTag', createdAt: '2016-10-10 21:11:15', auxPageId: 'axiom_of_choice_definition_mathematical', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20019', pageId: 'axiom_of_choice_definition_intuitive', userId: 'MarkChimes', edit: '1', type: 'newEdit', createdAt: '2016-10-10 21:11:14', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }