{
localUrl: '../page/bayes_rule_definition.html',
arbitalUrl: 'https://arbital.com/p/bayes_rule_definition',
rawJsonUrl: '../raw/553.json',
likeableId: '2962',
likeableType: 'page',
myLikeValue: '0',
likeCount: '5',
dislikeCount: '0',
likeScore: '5',
individualLikes: [
'EricBruylant',
'NateSoares',
'AndreiAlexandru',
'MichaelKillinger',
'JOSEPHCASSILLY'
],
pageId: 'bayes_rule_definition',
edit: '14',
editSummary: '',
prevEdit: '13',
currentEdit: '14',
wasPublished: 'true',
type: 'wiki',
title: 'Bayes' rule: Definition',
clickbait: '',
textLength: '6036',
alias: 'bayes_rule_definition',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'EliezerYudkowsky',
editCreatedAt: '2016-10-04 06:14:07',
pageCreatorId: 'NateSoares',
pageCreatedAt: '2016-07-06 07:08:31',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '2713',
text: 'Bayes' rule is the mathematics of [1rf probability theory] governing how to update your beliefs in the light of new evidence.\n\n[toc:]\n\n## [1y9 Notation]\n\nIn much of what follows, we'll use the following [1y9 notation]:\n\n- Let the hypotheses being considered be $H_1$ and $H_2$.\n- Let the evidence observed be $e_0.$\n- Let $\\mathbb P(H_i)$ denote the [1rm prior probability] of $H_i$ before observing the evidence.\n- Let the [1rj conditional probability] $\\mathbb P(e_0\\mid H_i)$ denote the [1rq likelihood] of observing evidence $e_0$ assuming $H_i$ to be true.\n- Let the [1rj conditional probability] $\\mathbb P(H_i\\mid e_0)$ denote the [1rp posterior probability] of $H_i$ after observing $e_0.$\n\n## [1x5 Odds]/[1zm proportional] form\n\nBayes' rule in the [1x5 odds form] or [1zm proportional form] states:\n\n$$\\dfrac{\\mathbb P(H_1)}{\\mathbb P(H_2)} \\times \\dfrac{\\mathbb P(e_0\\mid H_1)}{\\mathbb P(e_0\\mid H_2)} = \\dfrac{\\mathbb P(H_1\\mid e_0)}{\\mathbb P(H_2\\mid e_0)}$$\n\nIn other words, the [1rm prior] [1rb odds] times the [1rq likelihood ratio] yield the [1rp posterior] odds. [1rk Normalizing] these odds will then yield the posterior probabilities.\n\nIn [1zm other other words]: If you initially think $h_i$ is $\\alpha$ times as probable as $h_k$, and then see evidence that you're $\\beta$ times as likely to see if $h_i$ is true as if $h_k$ is true, you should update to thinking that $h_i$ is $\\alpha \\cdot \\beta$ times as probable as $h_k.$\n\nSuppose that Professor Plum and Miss Scarlet are two suspects in a murder, and that we start out thinking that Professor Plum is twice as likely to have committed the murder as Miss Scarlet ([1rm prior] [1rb odds] of 2 : 1). We then discover that the victim was poisoned. We think that Professor Plum is around one-fourth as likely to use poison as Miss Scarlet ([1rq likelihood ratio] of 1 : 4). Then after observing the victim was poisoned, we should think Plum is around half as likely to have committed the murder as Scarlet: $2 \\times \\dfrac{1}{4} = \\dfrac{1}{2}.$ This reflects [1rp posterior] odds of 1 : 2, or a posterior probability of 1/3, that Professor Plum did the deed.\n\n## [1xr Proof]\n\nThe [1xr proof of Bayes' rule] is by the definition of [1rj conditional probability] $\\mathbb P(X\\wedge Y) = \\mathbb P(X\\mid Y) \\cdot \\mathbb P(Y):$\n\n$$\n\\dfrac{\\mathbb P(H_i)}{\\mathbb P(H_j)} \\times \\dfrac{\\mathbb P(e\\mid H_i)}{\\mathbb P(e\\mid H_j)}\n= \\dfrac{\\mathbb P(e \\wedge H_i)}{\\mathbb P(e \\wedge H_j)}\n= \\dfrac{\\mathbb P(e \\wedge H_i) / \\mathbb P(e)}{\\mathbb P(e \\wedge H_j) / \\mathbb P(e)}\n= \\dfrac{\\mathbb P(H_i\\mid e)}{\\mathbb P(H_j\\mid e)}\n$$\n\n## [1zh Log odds form]\n\nThe [1zh log odds form of Bayes' rule] states:\n\n$$\\log \\left ( \\dfrac\n {\\mathbb P(H_i)}\n {\\mathbb P(H_j)}\n\\right )\n+\n\\log \\left ( \\dfrac\n {\\mathbb P(e\\mid H_i)}\n {\\mathbb P(e\\mid H_j)}\n\\right ) \n =\n\\log \\left ( \\dfrac\n {\\mathbb P(H_i\\mid e)}\n {\\mathbb P(H_j\\mid e)}\n\\right )\n$$\n\nE.g.: "A study of Chinese blood donors found that roughly 1 in 100,000 of them had HIV (as determined by a very reliable gold-standard test). The non-gold-standard test used for initial screening had a sensitivity of 99.7% and a specificity of 99.8%, meaning that it was 500 times as likely to return positive for infected as non-infected patients." Then our prior belief is -5 orders of magnitude against HIV, and if we then observe a positive test result, this is evidence of strength +2.7 orders of magnitude for HIV. Our posterior belief is -2.3 orders of magnitude, or odds of less than 1 to a 100, against HIV.\n\nIn log odds form, the same [22x strength of evidence] (log [1rq likelihood ratio]) always [1zh moves us the same additive distance] along a line representing strength of belief (also in log odds). If we measured distance in probabilities, then the same 2 : 1 likelihood ratio might move us a different distance along the probability line depending on whether we started with prior 10% probability or 50% probability.\n\n## Visualizations\n\nGraphical of visualizing Bayes' rule include [1wy frequency diagrams, the waterfall visualization], the [1zm spotlight visualization], the [1zh magnet visualization], and the [1xr Venn diagram for the proof].\n\n## Examples\n\nExamples of Bayes' rule may be found [1wt here].\n\n## [1zg Multiple hypotheses and updates]\n\nThe [1x5 odds form of Bayes' rule] works for odds ratios between more than two hypotheses, and applying multiple pieces of evidence. Suppose there's a bathtub full of coins. 1/2 of the coins are "fair" and have a 50% probability of producing heads on each coinflip; 1/3 of the coins produce 25% heads; and 1/6 produce 75% heads. You pull out a coin at random, flip it 3 times, and get the result HTH. You may legitimately calculate:\n\n$$\\begin{array}{rll}\n(1/2 : 1/3 : 1/6) \\cong & (3 : 2 : 1) & \\\\\n\\times & (2 : 1 : 3) & \\\\\n\\times & (2 : 3 : 1) & \\\\\n\\times & (2 : 1 : 3) & \\\\\n= & (24 : 6 : 9) & \\cong (8 : 2 : 3)\n\\end{array}$$\n\nSince multiple pieces of evidence may not be [conditional_independence conditionally independent] from one another, it is important to be aware of the [naive_bayes_assumption Naive Bayes assumption] and whether you are making it.\n\n## [554 Probability form]\n\nAs a formula for a single probability $\\mathbb P(H_i\\mid e),$ Bayes' rule states:\n\n$$\\mathbb P(H_i\\mid e) = \\dfrac{\\mathbb P(e\\mid H_i) \\cdot \\mathbb P(H_i)}{\\sum_k \\mathbb P(e\\mid H_k) \\cdot \\mathbb P(H_k)}$$\n\n## [1zj Functional form]\n\nIn [1zj functional form], Bayes' rule states:\n\n$$\\mathbb P(\\mathbf{H}\\mid e) \\propto \\mathbb P(e\\mid \\mathbf{H}) \\cdot \\mathbb P(\\mathbf{H}).$$\n\nThe posterior probability function over hypotheses given the evidence, is *proportional* to the likelihood function from the evidence to those hypotheses, times the prior probability function over those hypotheses.\n\nSince posterior probabilities over [1rd mutually exclusive and exhaustive] possibilities must sum to $1,$ [1rk normalizing] the product of the likelihood function and prior probability function will yield the exact posterior probability function.\n',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '2',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'NateSoares',
'AlexeiAndreev',
'EliezerYudkowsky',
'EricBruylant'
],
childIds: [],
parentIds: [
'bayes_rule'
],
commentIds: [
'56g',
'56h'
],
questionIds: [],
tagIds: [
'c_class_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: 'bayes_rule',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19840',
pageId: 'bayes_rule_definition',
userId: 'EliezerYudkowsky',
edit: '14',
type: 'newEdit',
createdAt: '2016-10-04 06:14:08',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19635',
pageId: 'bayes_rule_definition',
userId: 'EliezerYudkowsky',
edit: '13',
type: 'newEdit',
createdAt: '2016-09-15 22:34:25',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19634',
pageId: 'bayes_rule_definition',
userId: 'EliezerYudkowsky',
edit: '0',
type: 'newAlias',
createdAt: '2016-09-15 22:34:24',
auxPageId: '',
oldSettingsValue: 'bayes_rule_explore',
newSettingsValue: 'bayes_rule_definition'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18705',
pageId: 'bayes_rule_definition',
userId: 'AlexeiAndreev',
edit: '12',
type: 'newEdit',
createdAt: '2016-08-12 23:29:54',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18447',
pageId: 'bayes_rule_definition',
userId: 'NateSoares',
edit: '10',
type: 'newEdit',
createdAt: '2016-08-05 19:56:43',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18409',
pageId: 'bayes_rule_definition',
userId: 'AlexeiAndreev',
edit: '9',
type: 'newEdit',
createdAt: '2016-08-05 00:02:39',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18280',
pageId: 'bayes_rule_definition',
userId: 'AlexeiAndreev',
edit: '8',
type: 'newEdit',
createdAt: '2016-08-03 21:55:08',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18209',
pageId: 'bayes_rule_definition',
userId: 'EricBruylant',
edit: '6',
type: 'newEdit',
createdAt: '2016-08-03 15:34:00',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'added link and removed hanging ]'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18170',
pageId: 'bayes_rule_definition',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-02 17:47:14',
auxPageId: 'c_class_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16232',
pageId: 'bayes_rule_definition',
userId: 'NateSoares',
edit: '5',
type: 'newEdit',
createdAt: '2016-07-08 16:01:05',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16231',
pageId: 'bayes_rule_definition',
userId: 'NateSoares',
edit: '4',
type: 'newEdit',
createdAt: '2016-07-08 15:59:58',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15921',
pageId: 'bayes_rule_definition',
userId: 'NateSoares',
edit: '3',
type: 'newEdit',
createdAt: '2016-07-07 04:56:49',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15694',
pageId: 'bayes_rule_definition',
userId: 'NateSoares',
edit: '2',
type: 'newEdit',
createdAt: '2016-07-06 15:05:34',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15635',
pageId: 'bayes_rule_definition',
userId: 'NateSoares',
edit: '0',
type: 'newParent',
createdAt: '2016-07-06 07:08:32',
auxPageId: 'bayes_rule',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15633',
pageId: 'bayes_rule_definition',
userId: 'NateSoares',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-06 07:08:31',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {
improveStub: {
likeableId: '3682',
likeableType: 'contentRequest',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [],
id: '137',
pageId: 'bayes_rule_definition',
requestType: 'improveStub',
createdAt: '2016-11-02 11:20:45'
}
}
}