{
  localUrl: '../page/bezout_theorem.html',
  arbitalUrl: 'https://arbital.com/p/bezout_theorem',
  rawJsonUrl: '../raw/5mp.json',
  likeableId: '3304',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'bezout_theorem',
  edit: '3',
  editSummary: '',
  prevEdit: '2',
  currentEdit: '3',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Bézout's theorem',
  clickbait: 'Bézout's theorem is an important link between highest common factors and the integer solutions of a certain equation.',
  textLength: '1877',
  alias: 'bezout_theorem',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-09-22 06:26:22',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-07-28 17:23:05',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '32',
  text: '[summary: Bézout's theorem states that if $a$ and $b$ are integers, and $c$ is an integer, then the equation $ax+by = c$ has integer solutions in $x$ and $y$ if and only if the [-5mw] of $a$ and $b$ divides $c$.]\n\nBézout's theorem is an important basic theorem of number theory.\nIt states that if $a$ and $b$ are integers, and $c$ is an integer, then the equation $ax+by = c$ has integer solutions in $x$ and $y$ if and only if the [-5mw] of $a$ and $b$ divides $c$.\n\n# Proof\n\nWe have two directions of the equivalence to prove.\n\n## If $ax+by=c$ has solutions\n\nSuppose $ax+by=c$ has solutions in $x$ and $y$.\nThen the highest common factor of $a$ and $b$ divides $a$ and $b$, so it divides $ax$ and $by$; hence it divides their sum, and hence $c$.\n\n## If the highest common factor divides $c$\n\nSuppose $\\mathrm{hcf}(a,b) \\mid c$; equivalently, there is some $d$ such that $d \\times \\mathrm{hcf}(a,b) = c$.\n\nWe have the following fact: that the highest common factor is a linear combination of $a, b$. ([hcf_is_linear_combination Proof]; this [extended_euclidean_algorithm can also be seen] by working through [euclidean_algorithm Euclid's algorithm].)\n\nTherefore there are $x$ and $y$ such that $ax + by = \\mathrm{hcf}(a,b)$.\n\nFinally, $a (xd) + b (yd) = d \\mathrm{hcf}(a, b) = c$, as required.\n\n# Actually finding the solutions\n\nSuppose $d \\times \\mathrm{hcf}(a,b) = c$, as above.\n\nThe [-extended_euclidean_algorithm] can be used (efficiently!) to obtain a linear combination $ax+by$ of $a$ and $b$ which equals $\\mathrm{hcf}(a,b)$.\nOnce we have found such a linear combination, the solutions to the integer equation $ax+by=c$ follow quickly by just multiplying through by $d$.\n\n# Importance\n\nBézout's theorem is important as a step towards the proof of [5mh Euclid's lemma], which itself is the key behind the [5rh].\nIt also holds in general [5r5 principal ideal domains].',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens',
    'EricBruylant'
  ],
  childIds: [],
  parentIds: [
    'greatest_common_divisor'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'math2',
    'c_class_meta_tag',
    'proof_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19681',
      pageId: 'bezout_theorem',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-09-22 06:26:22',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18983',
      pageId: 'bezout_theorem',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-20 13:07:34',
      auxPageId: 'c_class_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18982',
      pageId: 'bezout_theorem',
      userId: 'EricBruylant',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-08-20 13:06:54',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'fixing links'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18981',
      pageId: 'bezout_theorem',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-20 13:06:34',
      auxPageId: 'proof_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18980',
      pageId: 'bezout_theorem',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-08-20 13:06:09',
      auxPageId: 'needs_parent_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18978',
      pageId: 'bezout_theorem',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteParent',
      createdAt: '2016-08-20 13:06:07',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18976',
      pageId: 'bezout_theorem',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-08-20 13:06:06',
      auxPageId: 'greatest_common_divisor',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18215',
      pageId: 'bezout_theorem',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-03 15:52:05',
      auxPageId: 'needs_parent_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18210',
      pageId: 'bezout_theorem',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-03 15:44:55',
      auxPageId: 'math2',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17679',
      pageId: 'bezout_theorem',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-28 17:23:06',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17677',
      pageId: 'bezout_theorem',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-28 17:23:05',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}