{
localUrl: '../page/bezout_theorem.html',
arbitalUrl: 'https://arbital.com/p/bezout_theorem',
rawJsonUrl: '../raw/5mp.json',
likeableId: '3304',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'EricBruylant'
],
pageId: 'bezout_theorem',
edit: '3',
editSummary: '',
prevEdit: '2',
currentEdit: '3',
wasPublished: 'true',
type: 'wiki',
title: 'Bézout's theorem',
clickbait: 'Bézout's theorem is an important link between highest common factors and the integer solutions of a certain equation.',
textLength: '1877',
alias: 'bezout_theorem',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-09-22 06:26:22',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-07-28 17:23:05',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '32',
text: '[summary: Bézout's theorem states that if $a$ and $b$ are integers, and $c$ is an integer, then the equation $ax+by = c$ has integer solutions in $x$ and $y$ if and only if the [-5mw] of $a$ and $b$ divides $c$.]\n\nBézout's theorem is an important basic theorem of number theory.\nIt states that if $a$ and $b$ are integers, and $c$ is an integer, then the equation $ax+by = c$ has integer solutions in $x$ and $y$ if and only if the [-5mw] of $a$ and $b$ divides $c$.\n\n# Proof\n\nWe have two directions of the equivalence to prove.\n\n## If $ax+by=c$ has solutions\n\nSuppose $ax+by=c$ has solutions in $x$ and $y$.\nThen the highest common factor of $a$ and $b$ divides $a$ and $b$, so it divides $ax$ and $by$; hence it divides their sum, and hence $c$.\n\n## If the highest common factor divides $c$\n\nSuppose $\\mathrm{hcf}(a,b) \\mid c$; equivalently, there is some $d$ such that $d \\times \\mathrm{hcf}(a,b) = c$.\n\nWe have the following fact: that the highest common factor is a linear combination of $a, b$. ([hcf_is_linear_combination Proof]; this [extended_euclidean_algorithm can also be seen] by working through [euclidean_algorithm Euclid's algorithm].)\n\nTherefore there are $x$ and $y$ such that $ax + by = \\mathrm{hcf}(a,b)$.\n\nFinally, $a (xd) + b (yd) = d \\mathrm{hcf}(a, b) = c$, as required.\n\n# Actually finding the solutions\n\nSuppose $d \\times \\mathrm{hcf}(a,b) = c$, as above.\n\nThe [-extended_euclidean_algorithm] can be used (efficiently!) to obtain a linear combination $ax+by$ of $a$ and $b$ which equals $\\mathrm{hcf}(a,b)$.\nOnce we have found such a linear combination, the solutions to the integer equation $ax+by=c$ follow quickly by just multiplying through by $d$.\n\n# Importance\n\nBézout's theorem is important as a step towards the proof of [5mh Euclid's lemma], which itself is the key behind the [5rh].\nIt also holds in general [5r5 principal ideal domains].',
metaText: '',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens',
'EricBruylant'
],
childIds: [],
parentIds: [
'greatest_common_divisor'
],
commentIds: [],
questionIds: [],
tagIds: [
'math2',
'c_class_meta_tag',
'proof_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
commentCount: '0',
newCommentCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19681',
pageId: 'bezout_theorem',
userId: 'PatrickStevens',
edit: '3',
type: 'newEdit',
createdAt: '2016-09-22 06:26:22',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18983',
pageId: 'bezout_theorem',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-20 13:07:34',
auxPageId: 'c_class_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18982',
pageId: 'bezout_theorem',
userId: 'EricBruylant',
edit: '2',
type: 'newEdit',
createdAt: '2016-08-20 13:06:54',
auxPageId: '',
oldSettingsValue: '',
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18981',
pageId: 'bezout_theorem',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-20 13:06:34',
auxPageId: 'proof_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18980',
pageId: 'bezout_theorem',
userId: 'EricBruylant',
edit: '0',
type: 'deleteTag',
createdAt: '2016-08-20 13:06:09',
auxPageId: 'needs_parent_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18978',
pageId: 'bezout_theorem',
userId: 'EricBruylant',
edit: '0',
type: 'deleteParent',
createdAt: '2016-08-20 13:06:07',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18976',
pageId: 'bezout_theorem',
userId: 'EricBruylant',
edit: '0',
type: 'newParent',
createdAt: '2016-08-20 13:06:06',
auxPageId: 'greatest_common_divisor',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18215',
pageId: 'bezout_theorem',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-03 15:52:05',
auxPageId: 'needs_parent_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18210',
pageId: 'bezout_theorem',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-03 15:44:55',
auxPageId: 'math2',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17679',
pageId: 'bezout_theorem',
userId: 'PatrickStevens',
edit: '0',
type: 'newParent',
createdAt: '2016-07-28 17:23:06',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17677',
pageId: 'bezout_theorem',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-28 17:23:05',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}