{
  localUrl: '../page/cayley_theorem_symmetric_groups.html',
  arbitalUrl: 'https://arbital.com/p/cayley_theorem_symmetric_groups',
  rawJsonUrl: '../raw/49b.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'cayley_theorem_symmetric_groups',
  edit: '4',
  editSummary: '',
  prevEdit: '3',
  currentEdit: '4',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Cayley's Theorem on symmetric groups',
  clickbait: 'The "fundamental theorem of symmetry", forging the connection between symmetry and group theory.',
  textLength: '1008',
  alias: 'cayley_theorem_symmetric_groups',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-15 09:29:23',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-14 15:31:18',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '67',
  text: 'Cayley's Theorem states that every group $G$ appears as a certain subgroup of the [-497] $\\mathrm{Sym}(G)$ on the [-3gz] of $G$.\n\n# Formal statement\n\nLet $G$ be a group.\nThen $G$ is [49x isomorphic] to a subgroup of $\\mathrm{Sym}(G)$.\n\n# Proof\n\nConsider the left regular [3t9 action] of $G$ on $G$: that is, the function $G \\times G \\to G$ given by $(g, h) \\mapsto gh$.\nThis [49c induces a homomorphism] $\\Phi: G \\to \\mathrm{Sym}(G)$ given by [-currying]: $g \\mapsto (h \\mapsto gh)$.\n\nNow the following are equivalent:\n\n- $g \\in \\mathrm{ker}(\\Phi)$ the [49y kernel] of $\\Phi$\n- $(h \\mapsto gh)$ is the identity map\n- $gh = h$ for all $h$\n- $g$ is the identity of $G$\n\nTherefore the kernel of the homomorphism is trivial, so it is injective.\nIt is therefore bijective onto its [3lh image], and hence an isomorphism onto its image.\n\nSince [4b4 the image of a group under a homomorphism is a subgroup of the codomain of the homomorphism], we have shown that $G$ is isomorphic to a subgroup of $\\mathrm{Sym}(G)$.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'symmetric_group'
  ],
  commentIds: [
    '49q'
  ],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '3881',
      parentId: 'group_action_induces_homomorphism',
      childId: 'cayley_theorem_symmetric_groups',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12977',
      pageId: 'cayley_theorem_symmetric_groups',
      userId: 'PatrickStevens',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-06-15 09:29:23',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12725',
      pageId: 'cayley_theorem_symmetric_groups',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteTeacher',
      createdAt: '2016-06-14 19:00:25',
      auxPageId: 'cayley_theorem_symmetric_groups',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12726',
      pageId: 'cayley_theorem_symmetric_groups',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteSubject',
      createdAt: '2016-06-14 19:00:25',
      auxPageId: 'cayley_theorem_symmetric_groups',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12719',
      pageId: 'cayley_theorem_symmetric_groups',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newTeacher',
      createdAt: '2016-06-14 18:56:20',
      auxPageId: 'cayley_theorem_symmetric_groups',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12720',
      pageId: 'cayley_theorem_symmetric_groups',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newSubject',
      createdAt: '2016-06-14 18:56:20',
      auxPageId: 'cayley_theorem_symmetric_groups',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12714',
      pageId: 'cayley_theorem_symmetric_groups',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newRequirement',
      createdAt: '2016-06-14 18:50:13',
      auxPageId: 'group_action_induces_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12712',
      pageId: 'cayley_theorem_symmetric_groups',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteRequirement',
      createdAt: '2016-06-14 18:50:08',
      auxPageId: 'group_action',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12695',
      pageId: 'cayley_theorem_symmetric_groups',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteRequirement',
      createdAt: '2016-06-14 17:11:38',
      auxPageId: 'symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12693',
      pageId: 'cayley_theorem_symmetric_groups',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newRequirement',
      createdAt: '2016-06-14 17:11:34',
      auxPageId: 'symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12652',
      pageId: 'cayley_theorem_symmetric_groups',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-06-14 15:48:36',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12651',
      pageId: 'cayley_theorem_symmetric_groups',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-14 15:48:01',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12643',
      pageId: 'cayley_theorem_symmetric_groups',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-14 15:31:18',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12640',
      pageId: 'cayley_theorem_symmetric_groups',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-06-14 15:22:36',
      auxPageId: 'group_action',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12639',
      pageId: 'cayley_theorem_symmetric_groups',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-06-14 15:20:55',
      auxPageId: 'symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}