{ localUrl: '../page/cayley_theorem_symmetric_groups.html', arbitalUrl: 'https://arbital.com/p/cayley_theorem_symmetric_groups', rawJsonUrl: '../raw/49b.json', likeableId: '0', likeableType: 'page', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], pageId: 'cayley_theorem_symmetric_groups', edit: '4', editSummary: '', prevEdit: '3', currentEdit: '4', wasPublished: 'true', type: 'wiki', title: 'Cayley's Theorem on symmetric groups', clickbait: 'The "fundamental theorem of symmetry", forging the connection between symmetry and group theory.', textLength: '1008', alias: 'cayley_theorem_symmetric_groups', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-06-15 09:29:23', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-06-14 15:31:18', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '67', text: 'Cayley's Theorem states that every group $G$ appears as a certain subgroup of the [-497] $\\mathrm{Sym}(G)$ on the [-3gz] of $G$.\n\n# Formal statement\n\nLet $G$ be a group.\nThen $G$ is [49x isomorphic] to a subgroup of $\\mathrm{Sym}(G)$.\n\n# Proof\n\nConsider the left regular [3t9 action] of $G$ on $G$: that is, the function $G \\times G \\to G$ given by $(g, h) \\mapsto gh$.\nThis [49c induces a homomorphism] $\\Phi: G \\to \\mathrm{Sym}(G)$ given by [-currying]: $g \\mapsto (h \\mapsto gh)$.\n\nNow the following are equivalent:\n\n- $g \\in \\mathrm{ker}(\\Phi)$ the [49y kernel] of $\\Phi$\n- $(h \\mapsto gh)$ is the identity map\n- $gh = h$ for all $h$\n- $g$ is the identity of $G$\n\nTherefore the kernel of the homomorphism is trivial, so it is injective.\nIt is therefore bijective onto its [3lh image], and hence an isomorphism onto its image.\n\nSince [4b4 the image of a group under a homomorphism is a subgroup of the codomain of the homomorphism], we have shown that $G$ is isomorphic to a subgroup of $\\mathrm{Sym}(G)$.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens' ], childIds: [], parentIds: [ 'symmetric_group' ], commentIds: [ '49q' ], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [ { id: '3881', parentId: 'group_action_induces_homomorphism', childId: 'cayley_theorem_symmetric_groups', type: 'requirement', creatorId: 'AlexeiAndreev', createdAt: '2016-06-17 21:58:56', level: '1', isStrong: 'false', everPublished: 'true' } ], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12977', pageId: 'cayley_theorem_symmetric_groups', userId: 'PatrickStevens', edit: '4', type: 'newEdit', createdAt: '2016-06-15 09:29:23', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12725', pageId: 'cayley_theorem_symmetric_groups', userId: 'PatrickStevens', edit: '0', type: 'deleteTeacher', createdAt: '2016-06-14 19:00:25', auxPageId: 'cayley_theorem_symmetric_groups', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12726', pageId: 'cayley_theorem_symmetric_groups', userId: 'PatrickStevens', edit: '0', type: 'deleteSubject', createdAt: '2016-06-14 19:00:25', auxPageId: 'cayley_theorem_symmetric_groups', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12719', pageId: 'cayley_theorem_symmetric_groups', userId: 'PatrickStevens', edit: '3', type: 'newTeacher', createdAt: '2016-06-14 18:56:20', auxPageId: 'cayley_theorem_symmetric_groups', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12720', pageId: 'cayley_theorem_symmetric_groups', userId: 'PatrickStevens', edit: '3', type: 'newSubject', createdAt: '2016-06-14 18:56:20', auxPageId: 'cayley_theorem_symmetric_groups', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12714', pageId: 'cayley_theorem_symmetric_groups', userId: 'PatrickStevens', edit: '3', type: 'newRequirement', createdAt: '2016-06-14 18:50:13', auxPageId: 'group_action_induces_homomorphism', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12712', pageId: 'cayley_theorem_symmetric_groups', userId: 'PatrickStevens', edit: '0', type: 'deleteRequirement', createdAt: '2016-06-14 18:50:08', auxPageId: 'group_action', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12695', pageId: 'cayley_theorem_symmetric_groups', userId: 'PatrickStevens', edit: '0', type: 'deleteRequirement', createdAt: '2016-06-14 17:11:38', auxPageId: 'symmetric_group', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12693', pageId: 'cayley_theorem_symmetric_groups', userId: 'PatrickStevens', edit: '3', type: 'newRequirement', createdAt: '2016-06-14 17:11:34', auxPageId: 'symmetric_group', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12652', pageId: 'cayley_theorem_symmetric_groups', userId: 'PatrickStevens', edit: '3', type: 'newEdit', createdAt: '2016-06-14 15:48:36', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12651', pageId: 'cayley_theorem_symmetric_groups', userId: 'PatrickStevens', edit: '2', type: 'newEdit', createdAt: '2016-06-14 15:48:01', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12643', pageId: 'cayley_theorem_symmetric_groups', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-06-14 15:31:18', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12640', pageId: 'cayley_theorem_symmetric_groups', userId: 'PatrickStevens', edit: '1', type: 'newRequirement', createdAt: '2016-06-14 15:22:36', auxPageId: 'group_action', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12639', pageId: 'cayley_theorem_symmetric_groups', userId: 'PatrickStevens', edit: '1', type: 'newParent', createdAt: '2016-06-14 15:20:55', auxPageId: 'symmetric_group', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }