{
localUrl: '../page/cayley_theorem_symmetric_groups.html',
arbitalUrl: 'https://arbital.com/p/cayley_theorem_symmetric_groups',
rawJsonUrl: '../raw/49b.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: 'cayley_theorem_symmetric_groups',
edit: '4',
editSummary: '',
prevEdit: '3',
currentEdit: '4',
wasPublished: 'true',
type: 'wiki',
title: 'Cayley's Theorem on symmetric groups',
clickbait: 'The "fundamental theorem of symmetry", forging the connection between symmetry and group theory.',
textLength: '1008',
alias: 'cayley_theorem_symmetric_groups',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-06-15 09:29:23',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-06-14 15:31:18',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '67',
text: 'Cayley's Theorem states that every group $G$ appears as a certain subgroup of the [-497] $\\mathrm{Sym}(G)$ on the [-3gz] of $G$.\n\n# Formal statement\n\nLet $G$ be a group.\nThen $G$ is [49x isomorphic] to a subgroup of $\\mathrm{Sym}(G)$.\n\n# Proof\n\nConsider the left regular [3t9 action] of $G$ on $G$: that is, the function $G \\times G \\to G$ given by $(g, h) \\mapsto gh$.\nThis [49c induces a homomorphism] $\\Phi: G \\to \\mathrm{Sym}(G)$ given by [-currying]: $g \\mapsto (h \\mapsto gh)$.\n\nNow the following are equivalent:\n\n- $g \\in \\mathrm{ker}(\\Phi)$ the [49y kernel] of $\\Phi$\n- $(h \\mapsto gh)$ is the identity map\n- $gh = h$ for all $h$\n- $g$ is the identity of $G$\n\nTherefore the kernel of the homomorphism is trivial, so it is injective.\nIt is therefore bijective onto its [3lh image], and hence an isomorphism onto its image.\n\nSince [4b4 the image of a group under a homomorphism is a subgroup of the codomain of the homomorphism], we have shown that $G$ is isomorphic to a subgroup of $\\mathrm{Sym}(G)$.',
metaText: '',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens'
],
childIds: [],
parentIds: [
'symmetric_group'
],
commentIds: [
'49q'
],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [
{
id: '3881',
parentId: 'group_action_induces_homomorphism',
childId: 'cayley_theorem_symmetric_groups',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
}
],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
commentCount: '0',
newCommentCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12977',
pageId: 'cayley_theorem_symmetric_groups',
userId: 'PatrickStevens',
edit: '4',
type: 'newEdit',
createdAt: '2016-06-15 09:29:23',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12725',
pageId: 'cayley_theorem_symmetric_groups',
userId: 'PatrickStevens',
edit: '0',
type: 'deleteTeacher',
createdAt: '2016-06-14 19:00:25',
auxPageId: 'cayley_theorem_symmetric_groups',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12726',
pageId: 'cayley_theorem_symmetric_groups',
userId: 'PatrickStevens',
edit: '0',
type: 'deleteSubject',
createdAt: '2016-06-14 19:00:25',
auxPageId: 'cayley_theorem_symmetric_groups',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12719',
pageId: 'cayley_theorem_symmetric_groups',
userId: 'PatrickStevens',
edit: '3',
type: 'newTeacher',
createdAt: '2016-06-14 18:56:20',
auxPageId: 'cayley_theorem_symmetric_groups',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12720',
pageId: 'cayley_theorem_symmetric_groups',
userId: 'PatrickStevens',
edit: '3',
type: 'newSubject',
createdAt: '2016-06-14 18:56:20',
auxPageId: 'cayley_theorem_symmetric_groups',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12714',
pageId: 'cayley_theorem_symmetric_groups',
userId: 'PatrickStevens',
edit: '3',
type: 'newRequirement',
createdAt: '2016-06-14 18:50:13',
auxPageId: 'group_action_induces_homomorphism',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12712',
pageId: 'cayley_theorem_symmetric_groups',
userId: 'PatrickStevens',
edit: '0',
type: 'deleteRequirement',
createdAt: '2016-06-14 18:50:08',
auxPageId: 'group_action',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12695',
pageId: 'cayley_theorem_symmetric_groups',
userId: 'PatrickStevens',
edit: '0',
type: 'deleteRequirement',
createdAt: '2016-06-14 17:11:38',
auxPageId: 'symmetric_group',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12693',
pageId: 'cayley_theorem_symmetric_groups',
userId: 'PatrickStevens',
edit: '3',
type: 'newRequirement',
createdAt: '2016-06-14 17:11:34',
auxPageId: 'symmetric_group',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12652',
pageId: 'cayley_theorem_symmetric_groups',
userId: 'PatrickStevens',
edit: '3',
type: 'newEdit',
createdAt: '2016-06-14 15:48:36',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12651',
pageId: 'cayley_theorem_symmetric_groups',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-06-14 15:48:01',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12643',
pageId: 'cayley_theorem_symmetric_groups',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-14 15:31:18',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12640',
pageId: 'cayley_theorem_symmetric_groups',
userId: 'PatrickStevens',
edit: '1',
type: 'newRequirement',
createdAt: '2016-06-14 15:22:36',
auxPageId: 'group_action',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12639',
pageId: 'cayley_theorem_symmetric_groups',
userId: 'PatrickStevens',
edit: '1',
type: 'newParent',
createdAt: '2016-06-14 15:20:55',
auxPageId: 'symmetric_group',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}