{
localUrl: '../page/conjugacy_classes_alternating_five_simpler.html',
arbitalUrl: 'https://arbital.com/p/conjugacy_classes_alternating_five_simpler',
rawJsonUrl: '../raw/4l0.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: 'conjugacy_classes_alternating_five_simpler',
edit: '5',
editSummary: '',
prevEdit: '4',
currentEdit: '5',
wasPublished: 'true',
type: 'wiki',
title: 'Conjugacy classes of the alternating group on five elements: Simpler proof',
clickbait: 'A listing of the conjugacy classes of the alternating group on five letters, without using heavy theory.',
textLength: '3128',
alias: 'conjugacy_classes_alternating_five_simpler',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-06-18 15:07:31',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-06-18 13:18:20',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '70',
text: 'The [-4hf] $A_5$ on five elements has [4bj conjugacy classes] very similar to those of the [-497] $S_5$, but where one of the classes has split in two.\n\nNote that $A_5$ has $60$ elements, since it is precisely half of the elements of $S_5$ which has $5! = 120$ elements (where the exclamation mark is the [-factorial] function).\n\n# Table\n\n$$\\begin{array}{|c|c|c|c|}\n\\hline\n\\text{Representative}& \\text{Size of class} & \\text{Cycle type} & \\text{Order of element} \\\\ \\hline\n(12345) & 12 & 5 & 5 \\\\ \\hline\n(21345) & 12 & 5 & 5 \\\\ \\hline\n(123) & 20 & 3,1,1 & 3 \\\\ \\hline\n(12)(34) & 15 & 2,2,1 & 2 \\\\ \\hline\ne & 1 & 1,1,1,1,1 & 1 \\\\ \\hline\n\\end{array}$$\n\n# Working\n\nFirstly, the identity is in a class of its own, because $\\tau e \\tau^{-1} = \\tau \\tau^{-1} = e$ for every $\\tau$. \n\nNow, by the same reasoning as in [4bh the proof] that conjugate elements must have the same cycle type in $S_n$, that result also holds in $A_n$.\n\nHence we just need to see whether any of the cycle types comprise more than one conjugacy class.\n\nRecall that the available cycle types are $(5)$, $(3,1,1)$, $(2,2,1)$, $(1,1,1,1,1)$ (the last of which is the identity and we have already considered it).\n\n## Double-transpositions\n\nAll the double-transpositions are conjugate (so the $(2,2,1)$ cycle type does not split):\n\n- $(ab)(cd)$ is conjugate to $(ab)(ce)$ if we conjugate by $(ab)(de)$; symmetrically this covers all the cases where one of the two transpositions remains the same.\n- $(ab)(cd)$ is conjugate to $(ac)(bd)$ by $(cba)$; this covers the case that $e$ is not introduced.\n- $(ab)(cd)$ is conjugate to $(ac)(be)$ by $(bc)(de)$; this covers the remaining cases that $e$ is introduced and neither of the two transpositions remains the same.\n\n## Three-cycles\n\nAll the three-cycles are conjugate (so the $(3,1,1)$ cycle type does not split): \n\n- $(abc)$ is conjugate to $(acb)$ by $(bc)(de)$, so three-cycles are conjugate to their permutations.\n- $(abc)$ is conjugate to $(abd)$ by $(cde)$; this covers the case of introducing a single new element to the cycle.\n- $(abc)$ is conjugate to $(ade)$ by $(bd)(ce)$; this covers the case of introducing two new elements to the cycle.\n\n## Five-cycles\n\nThis class does split: I claim that $(12345)$ and $(21345)$ are not conjugate.\n(Once we have this, then the class must split into two chunks, since $\\{ \\rho (12345) \\rho^{-1}: \\rho \\ \\text{even} \\}$ is closed under conjugation in $A_5$, and $\\{ \\rho (12345) \\rho^{-1}: \\rho \\ \\text{odd} \\}$ is closed under conjugation in $A_5$.\nThe first is the conjugacy class of $(12345)$ in $A_5$; the second is the conjugacy class of $(21345) = (12)(12345)(12)^{-1}$.\nThe only question here was whether they were separate conjugacy classes or whether their union was the conjugacy class.)\n\nRecall that $\\tau (12345) \\tau^{-1} = (\\tau(1), \\tau(2), \\tau(3), \\tau(4), \\tau(5))$, so we would need a permutation $\\tau$ such that $\\tau$ sends $1$ to $2$, $2$ to $1$, $3$ to $3$, $4$ to $4$, and $5$ to $5$.\nThe only such permutation is $(12)$, the transposition, but that is not actually a member of $A_5$.\n\nHence in fact $(12345)$ and $(21345)$ are not conjugate.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: [
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0'
],
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens'
],
childIds: [],
parentIds: [
'alternating_group_five_conjugacy_classes'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [
{
id: '4246',
parentId: 'alternating_group',
childId: 'conjugacy_classes_alternating_five_simpler',
type: 'requirement',
creatorId: 'PatrickStevens',
createdAt: '2016-06-18 13:01:04',
level: '1',
isStrong: 'false',
everPublished: 'true'
},
{
id: '4247',
parentId: 'conjugacy_class',
childId: 'conjugacy_classes_alternating_five_simpler',
type: 'requirement',
creatorId: 'PatrickStevens',
createdAt: '2016-06-18 13:01:13',
level: '1',
isStrong: 'false',
everPublished: 'true'
}
],
subjects: [],
lenses: [],
lensParentId: 'alternating_group_five_conjugacy_classes',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13911',
pageId: 'conjugacy_classes_alternating_five_simpler',
userId: 'PatrickStevens',
edit: '0',
type: 'deleteTag',
createdAt: '2016-06-18 15:07:47',
auxPageId: 'work_in_progress_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13909',
pageId: 'conjugacy_classes_alternating_five_simpler',
userId: 'PatrickStevens',
edit: '5',
type: 'newEdit',
createdAt: '2016-06-18 15:07:31',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13908',
pageId: 'conjugacy_classes_alternating_five_simpler',
userId: 'PatrickStevens',
edit: '4',
type: 'newEdit',
createdAt: '2016-06-18 15:06:43',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13906',
pageId: 'conjugacy_classes_alternating_five_simpler',
userId: 'PatrickStevens',
edit: '3',
type: 'newEdit',
createdAt: '2016-06-18 15:05:44',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13905',
pageId: 'conjugacy_classes_alternating_five_simpler',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-06-18 15:05:10',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13888',
pageId: 'conjugacy_classes_alternating_five_simpler',
userId: 'PatrickStevens',
edit: '0',
type: 'newParent',
createdAt: '2016-06-18 13:18:22',
auxPageId: 'alternating_group_five_conjugacy_classes',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13890',
pageId: 'conjugacy_classes_alternating_five_simpler',
userId: 'PatrickStevens',
edit: '0',
type: 'newRequirement',
createdAt: '2016-06-18 13:18:22',
auxPageId: 'alternating_group',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13892',
pageId: 'conjugacy_classes_alternating_five_simpler',
userId: 'PatrickStevens',
edit: '0',
type: 'newRequirement',
createdAt: '2016-06-18 13:18:22',
auxPageId: 'conjugacy_class',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13894',
pageId: 'conjugacy_classes_alternating_five_simpler',
userId: 'PatrickStevens',
edit: '0',
type: 'newTag',
createdAt: '2016-06-18 13:18:22',
auxPageId: 'work_in_progress_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13886',
pageId: 'conjugacy_classes_alternating_five_simpler',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-18 13:18:20',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}