{ localUrl: '../page/conjugacy_classes_alternating_five_simpler.html', arbitalUrl: 'https://arbital.com/p/conjugacy_classes_alternating_five_simpler', rawJsonUrl: '../raw/4l0.json', likeableId: '0', likeableType: 'page', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], pageId: 'conjugacy_classes_alternating_five_simpler', edit: '5', editSummary: '', prevEdit: '4', currentEdit: '5', wasPublished: 'true', type: 'wiki', title: 'Conjugacy classes of the alternating group on five elements: Simpler proof', clickbait: 'A listing of the conjugacy classes of the alternating group on five letters, without using heavy theory.', textLength: '3128', alias: 'conjugacy_classes_alternating_five_simpler', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-06-18 15:07:31', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-06-18 13:18:20', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '70', text: 'The [-4hf] $A_5$ on five elements has [4bj conjugacy classes] very similar to those of the [-497] $S_5$, but where one of the classes has split in two.\n\nNote that $A_5$ has $60$ elements, since it is precisely half of the elements of $S_5$ which has $5! = 120$ elements (where the exclamation mark is the [-factorial] function).\n\n# Table\n\n$$\\begin{array}{|c|c|c|c|}\n\\hline\n\\text{Representative}& \\text{Size of class} & \\text{Cycle type} & \\text{Order of element} \\\\ \\hline\n(12345) & 12 & 5 & 5 \\\\ \\hline\n(21345) & 12 & 5 & 5 \\\\ \\hline\n(123) & 20 & 3,1,1 & 3 \\\\ \\hline\n(12)(34) & 15 & 2,2,1 & 2 \\\\ \\hline\ne & 1 & 1,1,1,1,1 & 1 \\\\ \\hline\n\\end{array}$$\n\n# Working\n\nFirstly, the identity is in a class of its own, because $\\tau e \\tau^{-1} = \\tau \\tau^{-1} = e$ for every $\\tau$. \n\nNow, by the same reasoning as in [4bh the proof] that conjugate elements must have the same cycle type in $S_n$, that result also holds in $A_n$.\n\nHence we just need to see whether any of the cycle types comprise more than one conjugacy class.\n\nRecall that the available cycle types are $(5)$, $(3,1,1)$, $(2,2,1)$, $(1,1,1,1,1)$ (the last of which is the identity and we have already considered it).\n\n## Double-transpositions\n\nAll the double-transpositions are conjugate (so the $(2,2,1)$ cycle type does not split):\n\n- $(ab)(cd)$ is conjugate to $(ab)(ce)$ if we conjugate by $(ab)(de)$; symmetrically this covers all the cases where one of the two transpositions remains the same.\n- $(ab)(cd)$ is conjugate to $(ac)(bd)$ by $(cba)$; this covers the case that $e$ is not introduced.\n- $(ab)(cd)$ is conjugate to $(ac)(be)$ by $(bc)(de)$; this covers the remaining cases that $e$ is introduced and neither of the two transpositions remains the same.\n\n## Three-cycles\n\nAll the three-cycles are conjugate (so the $(3,1,1)$ cycle type does not split): \n\n- $(abc)$ is conjugate to $(acb)$ by $(bc)(de)$, so three-cycles are conjugate to their permutations.\n- $(abc)$ is conjugate to $(abd)$ by $(cde)$; this covers the case of introducing a single new element to the cycle.\n- $(abc)$ is conjugate to $(ade)$ by $(bd)(ce)$; this covers the case of introducing two new elements to the cycle.\n\n## Five-cycles\n\nThis class does split: I claim that $(12345)$ and $(21345)$ are not conjugate.\n(Once we have this, then the class must split into two chunks, since $\\{ \\rho (12345) \\rho^{-1}: \\rho \\ \\text{even} \\}$ is closed under conjugation in $A_5$, and $\\{ \\rho (12345) \\rho^{-1}: \\rho \\ \\text{odd} \\}$ is closed under conjugation in $A_5$.\nThe first is the conjugacy class of $(12345)$ in $A_5$; the second is the conjugacy class of $(21345) = (12)(12345)(12)^{-1}$.\nThe only question here was whether they were separate conjugacy classes or whether their union was the conjugacy class.)\n\nRecall that $\\tau (12345) \\tau^{-1} = (\\tau(1), \\tau(2), \\tau(3), \\tau(4), \\tau(5))$, so we would need a permutation $\\tau$ such that $\\tau$ sends $1$ to $2$, $2$ to $1$, $3$ to $3$, $4$ to $4$, and $5$ to $5$.\nThe only such permutation is $(12)$, the transposition, but that is not actually a member of $A_5$.\n\nHence in fact $(12345)$ and $(21345)$ are not conjugate.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: [ '0', '0', '0', '0', '0', '0', '0', '0', '0', '0' ], muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens' ], childIds: [], parentIds: [ 'alternating_group_five_conjugacy_classes' ], commentIds: [], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [ { id: '4246', parentId: 'alternating_group', childId: 'conjugacy_classes_alternating_five_simpler', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-06-18 13:01:04', level: '1', isStrong: 'false', everPublished: 'true' }, { id: '4247', parentId: 'conjugacy_class', childId: 'conjugacy_classes_alternating_five_simpler', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-06-18 13:01:13', level: '1', isStrong: 'false', everPublished: 'true' } ], subjects: [], lenses: [], lensParentId: 'alternating_group_five_conjugacy_classes', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13911', pageId: 'conjugacy_classes_alternating_five_simpler', userId: 'PatrickStevens', edit: '0', type: 'deleteTag', createdAt: '2016-06-18 15:07:47', auxPageId: 'work_in_progress_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13909', pageId: 'conjugacy_classes_alternating_five_simpler', userId: 'PatrickStevens', edit: '5', type: 'newEdit', createdAt: '2016-06-18 15:07:31', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13908', pageId: 'conjugacy_classes_alternating_five_simpler', userId: 'PatrickStevens', edit: '4', type: 'newEdit', createdAt: '2016-06-18 15:06:43', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13906', pageId: 'conjugacy_classes_alternating_five_simpler', userId: 'PatrickStevens', edit: '3', type: 'newEdit', createdAt: '2016-06-18 15:05:44', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13905', pageId: 'conjugacy_classes_alternating_five_simpler', userId: 'PatrickStevens', edit: '2', type: 'newEdit', createdAt: '2016-06-18 15:05:10', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13888', pageId: 'conjugacy_classes_alternating_five_simpler', userId: 'PatrickStevens', edit: '0', type: 'newParent', createdAt: '2016-06-18 13:18:22', auxPageId: 'alternating_group_five_conjugacy_classes', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13890', pageId: 'conjugacy_classes_alternating_five_simpler', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-06-18 13:18:22', auxPageId: 'alternating_group', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13892', pageId: 'conjugacy_classes_alternating_five_simpler', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-06-18 13:18:22', auxPageId: 'conjugacy_class', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13894', pageId: 'conjugacy_classes_alternating_five_simpler', userId: 'PatrickStevens', edit: '0', type: 'newTag', createdAt: '2016-06-18 13:18:22', auxPageId: 'work_in_progress_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13886', pageId: 'conjugacy_classes_alternating_five_simpler', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-06-18 13:18:20', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }