{
  localUrl: '../page/disjoint_cycles_commute_symmetric_group.html',
  arbitalUrl: 'https://arbital.com/p/disjoint_cycles_commute_symmetric_group',
  rawJsonUrl: '../raw/49g.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'disjoint_cycles_commute_symmetric_group',
  edit: '2',
  editSummary: '',
  prevEdit: '1',
  currentEdit: '2',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Disjoint cycles commute in symmetric groups',
  clickbait: 'In cycle notation, if two cycles are disjoint, then they commute.',
  textLength: '1366',
  alias: 'disjoint_cycles_commute_symmetric_group',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-14 16:53:51',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-14 16:23:56',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '18',
  text: '[summary: In a symmetric group, if we are applying a collection of permutations which are each disjoint cycles, we get the same result no matter the order in which we perform the cycles.]\n\nConsider two [49f cycles] $(a_1 a_2 \\dots a_k)$ and $(b_1 b_2 \\dots b_m)$ in the [-497] $S_n$, where all the $a_i, b_j$ are distinct.\n\nThen it is the case that the following two elements of $S_n$ are equal:\n\n- $\\sigma$, which is obtained by first performing the permutation notated by $(a_1 a_2 \\dots a_k)$ and then by performing the permutation notated by $(b_1 b_2 \\dots b_m)$\n- $\\tau$, which is obtained by first performing the permutation notated by $(b_1 b_2 \\dots b_m)$ and then by performing the permutation notated by $(a_1 a_2 \\dots a_k)$\n\nIndeed, $\\sigma(a_i) = (b_1 b_2 \\dots b_m)[(a_1 a_2 \\dots a_k)(a_i)] = (b_1 b_2 \\dots b_m)(a_{i+1}) = a_{i+1}$ (taking $a_{k+1}$ to be $a_1$), while $\\tau(a_i) = (a_1 a_2 \\dots a_k)[(b_1 b_2 \\dots b_m)(a_i)] = (a_1 a_2 \\dots a_k)(a_i) = a_{i+1}$, so they agree on elements of $(a_1 a_2 \\dots a_k)$.\nSimilarly they agree on elements of $(b_1 b_2 \\dots b_m)$; and they both do not move anything which is not an $a_i$ or a $b_j$.\nHence they are the same permutation: they act in the same way on all elements of $\\{1,2,\\dots, n\\}$.\n\nThis reasoning generalises to more than two disjoint cycles, to show that disjoint cycles commute.\n',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'symmetric_group'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12688',
      pageId: 'disjoint_cycles_commute_symmetric_group',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-14 16:53:51',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12663',
      pageId: 'disjoint_cycles_commute_symmetric_group',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-14 16:23:56',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12661',
      pageId: 'disjoint_cycles_commute_symmetric_group',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-06-14 16:13:18',
      auxPageId: 'symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}