{
  localUrl: '../page/emulating_digits.html',
  arbitalUrl: 'https://arbital.com/p/emulating_digits',
  rawJsonUrl: '../raw/4sk.json',
  likeableId: '2853',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricRogstad'
  ],
  pageId: 'emulating_digits',
  edit: '2',
  editSummary: 'if -> If',
  prevEdit: '1',
  currentEdit: '2',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Emulating digits',
  clickbait: '',
  textLength: '1783',
  alias: 'emulating_digits',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'EricRogstad',
  editCreatedAt: '2016-06-25 17:14:02',
  pageCreatorId: 'NateSoares',
  pageCreatedAt: '2016-06-24 05:14:02',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '25',
  text: 'In general, given enough $n$-digits, you can emulate an $m$-digit, for any $m, n \\in$ [45h $\\mathbb N$]. If $m < n,$ you can emulate an $m$-digit using just one $n$-digit &mdash; in other words, you can use a [-42d] like a $7$-digit if you want to, by just ignoring three of the possible ways to set the digit wheel. If $m > n,$ things are a bit more difficult, but only slightly.\n\nBasically, with 2 $n$-digits, you can emulate a $n^2$-digit, as follows. Using your two $n$-digits, encode a number $(x, y)$ where $0 \\le x < n$ and $0 \\le y < n$. Interpret $(x, y)$ as $xn + y.$ You have now encoded a number between 0 (if  $x = y = 0$) and $n^2 - 1$ (if $x = y = n-1$). Congratulations, you just used two $n$-digits to make an $n^2$ digit!\n\nYou can use the same strategy to emulate $n^3$-digits (interpret $(x, y, z)$ as $xn^2 + yn + z$), $n^4$-digits (you get the picture), and so on. Now, to emulate an $m$-digit, just pick an exponent $a$ such that $n^a > m,$ collect $a$ copies of an $n$-digit, and you're done.\n\nThis isn't necessarily the most efficient way to use $n$-digits to encode $m$-digits. For example, if $m$ is 1,000,001 and $n$ is 10, then you need seven 10-digits. Seven 10-digits are enough to emulate a 10-million-digit, whereas $m$ is a mere million-and-one-digit &mdash; paying for a 10-million-digit when all you needed was an $m$-digit seems a bit excessive. For some different methods you can use to recover your losses when encoding one type of digit using another type of digit, see [44l] and [3ty]. (These techniques are fairly useful in practice, given that modern computers encode everything using [3p0 bits], i.e. 2-digits, and so it's useful to know how to efficiently encode $m$-messages using bits when $m$ is pretty far from the nearest power of 2.)',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '2',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'NateSoares',
    'EricRogstad'
  ],
  childIds: [],
  parentIds: [
    'math'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14594',
      pageId: 'emulating_digits',
      userId: 'EricRogstad',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-25 17:14:02',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'if -> If'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14560',
      pageId: 'emulating_digits',
      userId: 'NateSoares',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-06-24 05:14:04',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14558',
      pageId: 'emulating_digits',
      userId: 'NateSoares',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-24 05:14:02',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}