{
  localUrl: '../page/field_homomorphism_is_trivial_or_injective.html',
  arbitalUrl: 'https://arbital.com/p/field_homomorphism_is_trivial_or_injective',
  rawJsonUrl: '../raw/76h.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'field_homomorphism_is_trivial_or_injective',
  edit: '1',
  editSummary: '',
  prevEdit: '0',
  currentEdit: '1',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Field homomorphism is trivial or injective',
  clickbait: 'Field homomorphisms preserve a *lot* of structure; they preserve so much structure that they are always either injective or totally boring.',
  textLength: '1961',
  alias: 'field_homomorphism_is_trivial_or_injective',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-12-31 14:23:18',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-12-31 14:23:18',
  seeDomainId: '0',
  editDomainId: '163',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'false',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '9',
  text: '[summary(Technical): Let $F$ and $G$ be [481 fields], and let $f: F \\to G$ be a [-field_homomorphism]. Then $f$ either is the constant $0$ map, or it is [4b7 injective].]\n\n[summary: A structure-preserving [3jy map] between two [481 fields] turns out either to be totally trivial (sending every element to $0$) or it preserves so much structure that its [3lh image] is an embedded copy of the [3js domain]. More succinctly, if $f$ is a field homomorphism, then $f$ is either the constant $0$ map, or it is [4b7 injective].]\n\nLet $F$ and $G$ be [481 fields], and let $f: F \\to G$ be a [-field_homomorphism]. Then one of the following is the case:\n\n - $f$ is the constant $0$ map: for every $x \\in F$, we have $f(x) = 0_G$.\n - $f$ is [4b7 injective].\n\n# Proof\n\nLet $f: F \\to G$ be non-constant.\nWe need to show that $f$ is injective; equivalently, for any pair $x,y$ of elements with $f(x) = f(y)$, we need to show that $x = y$.\n\nSuppose $f(x) = f(y)$.\nThen we have $f(x)-f(y) = 0_G$; so $f(x-y) = 0_G$ because $f$ is a field homomorphism and so respects the "subtraction" operation.\nHence in fact it is enough to show the following sub-result:\n\n> Suppose $f$ is non-constant. If $f(z) = 0_G$, then $z = 0_F$.\n\nOnce we have done this, we simply let $z = x-y$.\n\n## Proof of sub-result\n\nSuppose $f(z) = 0_G$ but that $z$ is not $0_F$, so we may find its multiplicative inverse $z^{-1}$.\n\nThen $f(z^{-1}) f(z) = f(z^{-1}) \\times 0_G = 0_G$; but $f$ is a homomorphism, so $f(z^{-1} \\times z) = 0_G$, and so $f(1_F) = 0_G$.\n\nBut this contradicts that the [-49z], because we may consider $f$ to be a [-47t] between the *multiplicative groups* $F \\setminus \\{ 0_F \\}$ and $G \\setminus \\{0_G\\}$, whereupon $1_F$ is the identity of $F \\setminus \\{0_F\\}$, and $1_G$ is the identity of $F \\setminus \\{0_G\\}$.\n\nOur assumption on $z$ was that $z \\not = 0_F$, so the contradiction means that if $f(z) = 0_G$ then $z = 0_F$.\nThis proves the sub-result and hence the main theorem.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'algebraic_field'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'proof_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '3909',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '21196',
      pageId: 'field_homomorphism_is_trivial_or_injective',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-12-31 14:23:18',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}