{
localUrl: '../page/field_homomorphism_is_trivial_or_injective.html',
arbitalUrl: 'https://arbital.com/p/field_homomorphism_is_trivial_or_injective',
rawJsonUrl: '../raw/76h.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: 'field_homomorphism_is_trivial_or_injective',
edit: '1',
editSummary: '',
prevEdit: '0',
currentEdit: '1',
wasPublished: 'true',
type: 'wiki',
title: 'Field homomorphism is trivial or injective',
clickbait: 'Field homomorphisms preserve a *lot* of structure; they preserve so much structure that they are always either injective or totally boring.',
textLength: '1961',
alias: 'field_homomorphism_is_trivial_or_injective',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-12-31 14:23:18',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-12-31 14:23:18',
seeDomainId: '0',
editDomainId: '163',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'false',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '9',
text: '[summary(Technical): Let $F$ and $G$ be [481 fields], and let $f: F \\to G$ be a [-field_homomorphism]. Then $f$ either is the constant $0$ map, or it is [4b7 injective].]\n\n[summary: A structure-preserving [3jy map] between two [481 fields] turns out either to be totally trivial (sending every element to $0$) or it preserves so much structure that its [3lh image] is an embedded copy of the [3js domain]. More succinctly, if $f$ is a field homomorphism, then $f$ is either the constant $0$ map, or it is [4b7 injective].]\n\nLet $F$ and $G$ be [481 fields], and let $f: F \\to G$ be a [-field_homomorphism]. Then one of the following is the case:\n\n - $f$ is the constant $0$ map: for every $x \\in F$, we have $f(x) = 0_G$.\n - $f$ is [4b7 injective].\n\n# Proof\n\nLet $f: F \\to G$ be non-constant.\nWe need to show that $f$ is injective; equivalently, for any pair $x,y$ of elements with $f(x) = f(y)$, we need to show that $x = y$.\n\nSuppose $f(x) = f(y)$.\nThen we have $f(x)-f(y) = 0_G$; so $f(x-y) = 0_G$ because $f$ is a field homomorphism and so respects the "subtraction" operation.\nHence in fact it is enough to show the following sub-result:\n\n> Suppose $f$ is non-constant. If $f(z) = 0_G$, then $z = 0_F$.\n\nOnce we have done this, we simply let $z = x-y$.\n\n## Proof of sub-result\n\nSuppose $f(z) = 0_G$ but that $z$ is not $0_F$, so we may find its multiplicative inverse $z^{-1}$.\n\nThen $f(z^{-1}) f(z) = f(z^{-1}) \\times 0_G = 0_G$; but $f$ is a homomorphism, so $f(z^{-1} \\times z) = 0_G$, and so $f(1_F) = 0_G$.\n\nBut this contradicts that the [-49z], because we may consider $f$ to be a [-47t] between the *multiplicative groups* $F \\setminus \\{ 0_F \\}$ and $G \\setminus \\{0_G\\}$, whereupon $1_F$ is the identity of $F \\setminus \\{0_F\\}$, and $1_G$ is the identity of $F \\setminus \\{0_G\\}$.\n\nOur assumption on $z$ was that $z \\not = 0_F$, so the contradiction means that if $f(z) = 0_G$ then $z = 0_F$.\nThis proves the sub-result and hence the main theorem.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens'
],
childIds: [],
parentIds: [
'algebraic_field'
],
commentIds: [],
questionIds: [],
tagIds: [
'proof_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '3909',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '21196',
pageId: 'field_homomorphism_is_trivial_or_injective',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-12-31 14:23:18',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}