{ localUrl: '../page/first_order_linear_equation.html', arbitalUrl: 'https://arbital.com/p/first_order_linear_equation', rawJsonUrl: '../raw/845.json', likeableId: '4023', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'FaisalAlZaben' ], pageId: 'first_order_linear_equation', edit: '2', editSummary: '', prevEdit: '1', currentEdit: '2', wasPublished: 'true', type: 'wiki', title: 'First order linear equations', clickbait: '', textLength: '2060', alias: 'first_order_linear_equation', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'JaimeSevillaMolina', editCreatedAt: '2017-03-28 14:58:58', pageCreatorId: 'JaimeSevillaMolina', pageCreatedAt: '2017-03-28 14:50:50', seeDomainId: '0', editDomainId: 'arbital_featured_project', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'false', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '18', text: 'A **first order lineal equation** has the form\n$$\nu'=a(t)u+b(t)\n$$\nwhere $a$ and $b$ are continuous functionsfrom an interval $[\\alpha, \\beta]$ to the real line.\n\n$b$ is called the inhomogeneity of the problem, and the equation where $b=0$ is called the associated homogeneous equation.\n$$\nu'=a(t)u\n$$\n\nA **solution** of a first order linear equation is a $C^1$ function from $[\\alpha, \\beta]$ to the real line such that the equation is satisfied at all times. We will denote the set of solutions of an equation with inhomogeneity $b$ as $\\Sigma_b$, and the solutions of the associated homogeneous system as $\\Sigma_0$.\n\n## Properties of the space of solutions\n$\\Sigma_0$ is a [3w0 vector space]; that is, it satifies the **principle of superposition**: linear combinations of solutions are solutions.\n\n$\\Sigma_b$ is an [-affine_space] parallel to $\\Sigma_0$. That is, it satifies that the difference of any two solutions are in $\\Sigma_0$, and any element in $\\Sigma_0$ plus other element in $\\Sigma_b$ is an element from $\\Sigma_b$.\n\n## First order linear equations of constant coefficients\nOne special kind of linear equations are those in which the coefficients $a$ and $b$ are constant numbers Such linear equations are always resoluble.\n$$\nu' = au+b\n$$\n\nTo solve them, we first have to solve the associated homogeneous equation $u'=au$.\n\nThis has as a solution the functions $ke^{\\int_{t_0}^ta}$ for $k$ constant and $t_0\\in [\\alpha, \\beta]$.\n\nWe can find a concrete solution of the inhomogeneous equation using **variation of coefficients**.\nWe consider as a candidate to a solution the function $u=h\\dot v$, for $h$ a solution of the homogeneous system such as $e^{\\int_{t_0}^ta}$.\n\nThen if we plug $u$ into the equation we find that\n$$\nu'=(hv)'=h'v+hv'=au+b=a(hv)+b\n$$\nSince $h\\in\\Sigma_0$, $h'=ah$, thus\n$$\nv'=bh^{-1}=be^{-\\int_{t_0}^ta}\n$$\nTherefore we can integrate and we arrive to:\n$$\nv=\\int_{t_0}^tbe^{\\int_{t}^sa}ds\n$$\nBy the affinity of $\\Sigma_b$, we can parametrize it by $ke^{\\int_{t_0}^ta}+\\int_{t_0}^tbe^{\\int_{t}^sa}ds$ for $k$ constant.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '2', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: [ '0', '0', '0', '0', '0', '0', '0', '0', '0', '0' ], muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: { Summary: 'A **first order lineal equation** has the form' }, creatorIds: [ 'JaimeSevillaMolina' ], childIds: [], parentIds: [], commentIds: [ '84z' ], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [ { id: '7598', parentId: 'first_order_linear_equation', childId: 'first_order_linear_equation', type: 'subject', creatorId: 'JaimeSevillaMolina', createdAt: '2017-03-28 14:50:50', level: '2', isStrong: 'true', everPublished: 'true' } ], learnMore: [], requirements: [], subjects: [ { id: '7598', parentId: 'first_order_linear_equation', childId: 'first_order_linear_equation', type: 'subject', creatorId: 'JaimeSevillaMolina', createdAt: '2017-03-28 14:50:50', level: '2', isStrong: 'true', everPublished: 'true' } ], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '22408', pageId: 'first_order_linear_equation', userId: 'JaimeSevillaMolina', edit: '2', type: 'newEdit', createdAt: '2017-03-28 14:58:58', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '22405', pageId: 'first_order_linear_equation', userId: 'JaimeSevillaMolina', edit: '1', type: 'newEdit', createdAt: '2017-03-28 14:50:50', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '22406', pageId: 'first_order_linear_equation', userId: 'JaimeSevillaMolina', edit: '0', type: 'newTeacher', createdAt: '2017-03-28 14:50:50', auxPageId: 'first_order_linear_equation', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '22407', pageId: 'first_order_linear_equation', userId: 'JaimeSevillaMolina', edit: '0', type: 'newSubject', createdAt: '2017-03-28 14:50:50', auxPageId: 'first_order_linear_equation', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'false', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }