{
  localUrl: '../page/first_order_linear_equation.html',
  arbitalUrl: 'https://arbital.com/p/first_order_linear_equation',
  rawJsonUrl: '../raw/845.json',
  likeableId: '4023',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'FaisalAlZaben'
  ],
  pageId: 'first_order_linear_equation',
  edit: '2',
  editSummary: '',
  prevEdit: '1',
  currentEdit: '2',
  wasPublished: 'true',
  type: 'wiki',
  title: 'First order linear equations',
  clickbait: '',
  textLength: '2060',
  alias: 'first_order_linear_equation',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'JaimeSevillaMolina',
  editCreatedAt: '2017-03-28 14:58:58',
  pageCreatorId: 'JaimeSevillaMolina',
  pageCreatedAt: '2017-03-28 14:50:50',
  seeDomainId: '0',
  editDomainId: 'arbital_featured_project',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'false',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '18',
  text: 'A **first order lineal equation** has the form\n$$\nu'=a(t)u+b(t)\n$$\nwhere $a$ and $b$ are continuous functionsfrom an interval $[\\alpha, \\beta]$ to the real line.\n\n$b$ is called the inhomogeneity of the problem, and the equation where $b=0$ is called the associated homogeneous equation.\n$$\nu'=a(t)u\n$$\n\nA **solution** of a first order linear equation is a $C^1$ function from $[\\alpha, \\beta]$ to the real line such that the equation is satisfied at all times. We will denote the set of solutions of an equation with inhomogeneity $b$ as $\\Sigma_b$, and the solutions of the associated homogeneous system as $\\Sigma_0$.\n\n## Properties of the space of solutions\n$\\Sigma_0$ is a [3w0 vector space]; that is, it satifies the **principle of superposition**: linear combinations of solutions are solutions.\n\n$\\Sigma_b$ is an [-affine_space] parallel to $\\Sigma_0$. That is, it satifies that the difference of any two solutions are in $\\Sigma_0$, and any element in $\\Sigma_0$ plus other element in $\\Sigma_b$ is an element from $\\Sigma_b$.\n\n## First order linear equations of constant coefficients\nOne special kind of linear equations are those in which the coefficients $a$ and $b$ are constant numbers Such linear equations are always resoluble.\n$$\nu' = au+b\n$$\n\nTo solve them, we first have to solve the associated homogeneous equation $u'=au$.\n\nThis has as a solution the functions $ke^{\\int_{t_0}^ta}$ for $k$ constant and $t_0\\in [\\alpha, \\beta]$.\n\nWe can find a concrete solution of the inhomogeneous equation using **variation of coefficients**.\nWe consider as a candidate to a solution the function $u=h\\dot v$, for $h$ a solution of the homogeneous system such as $e^{\\int_{t_0}^ta}$.\n\nThen if we plug $u$ into the equation we find that\n$$\nu'=(hv)'=h'v+hv'=au+b=a(hv)+b\n$$\nSince $h\\in\\Sigma_0$, $h'=ah$, thus\n$$\nv'=bh^{-1}=be^{-\\int_{t_0}^ta}\n$$\nTherefore we can integrate and we arrive to:\n$$\nv=\\int_{t_0}^tbe^{\\int_{t}^sa}ds\n$$\nBy the affinity of $\\Sigma_b$, we can parametrize it by $ke^{\\int_{t_0}^ta}+\\int_{t_0}^tbe^{\\int_{t}^sa}ds$ for $k$ constant.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: [
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0'
  ],
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {
    Summary: 'A **first order lineal equation** has the form'
  },
  creatorIds: [
    'JaimeSevillaMolina'
  ],
  childIds: [],
  parentIds: [],
  commentIds: [
    '84z'
  ],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [
    {
      id: '7598',
      parentId: 'first_order_linear_equation',
      childId: 'first_order_linear_equation',
      type: 'subject',
      creatorId: 'JaimeSevillaMolina',
      createdAt: '2017-03-28 14:50:50',
      level: '2',
      isStrong: 'true',
      everPublished: 'true'
    }
  ],
  learnMore: [],
  requirements: [],
  subjects: [
    {
      id: '7598',
      parentId: 'first_order_linear_equation',
      childId: 'first_order_linear_equation',
      type: 'subject',
      creatorId: 'JaimeSevillaMolina',
      createdAt: '2017-03-28 14:50:50',
      level: '2',
      isStrong: 'true',
      everPublished: 'true'
    }
  ],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '22408',
      pageId: 'first_order_linear_equation',
      userId: 'JaimeSevillaMolina',
      edit: '2',
      type: 'newEdit',
      createdAt: '2017-03-28 14:58:58',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '22405',
      pageId: 'first_order_linear_equation',
      userId: 'JaimeSevillaMolina',
      edit: '1',
      type: 'newEdit',
      createdAt: '2017-03-28 14:50:50',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '22406',
      pageId: 'first_order_linear_equation',
      userId: 'JaimeSevillaMolina',
      edit: '0',
      type: 'newTeacher',
      createdAt: '2017-03-28 14:50:50',
      auxPageId: 'first_order_linear_equation',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '22407',
      pageId: 'first_order_linear_equation',
      userId: 'JaimeSevillaMolina',
      edit: '0',
      type: 'newSubject',
      createdAt: '2017-03-28 14:50:50',
      auxPageId: 'first_order_linear_equation',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'false',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}