{
localUrl: '../page/function_image.html',
arbitalUrl: 'https://arbital.com/p/function_image',
rawJsonUrl: '../raw/3lh.json',
likeableId: '2491',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'EricRogstad'
],
pageId: 'function_image',
edit: '7',
editSummary: '',
prevEdit: '6',
currentEdit: '7',
wasPublished: 'true',
type: 'wiki',
title: 'Image (of a function)',
clickbait: '',
textLength: '1180',
alias: 'function_image',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'NateSoares',
editCreatedAt: '2016-06-10 16:45:50',
pageCreatorId: 'NateSoares',
pageCreatedAt: '2016-05-13 23:17:23',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '51',
text: 'The image $\\operatorname{im}(f)$ of a [3jy function] $f : X \\to Y$ is the set of all possible outputs of $f$, which is a subset of $Y$. Using [3lj set builder notation], $\\operatorname{im}(f) = \\{f(x) \\mid x \\in X\\}.$\n\nVisualizing a function as a map that takes every point in an input set to one point in an output set, the image is the set of all places where $f$-arrows land (pictured as the yellow subset of $Y$ in the image below).\n\n\n\nThe image of a function is not to be confused with the [3lg codomain], which is the _type_ of output that the function produces. For example, consider the [43x Ackermann function], which is a very fast-growing (and difficult to compute) function. When someone asks what sort of thing the Ackermann function produces, the natural answer is not "something from a sparse and hard-to-calculate set of numbers that I can't tell you off the top of my head"; the natural answer is "it outputs a number." In this case, the codomain is "number", while the image is the sparse and hard-to-calculate subset of numbers. For more on this distinction, see the page on [3lv codomain vs image].',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'NateSoares'
],
childIds: [
'codomain_vs_image'
],
parentIds: [
'function'
],
commentIds: [
'3lp'
],
questionIds: [],
tagIds: [
'needs_clickbait_meta_tag',
'definition_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17151',
pageId: 'function_image',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-19 02:20:46',
auxPageId: 'needs_clickbait_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12339',
pageId: 'function_image',
userId: 'NateSoares',
edit: '7',
type: 'newEdit',
createdAt: '2016-06-10 16:45:50',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10310',
pageId: 'function_image',
userId: 'NateSoares',
edit: '6',
type: 'newEdit',
createdAt: '2016-05-14 05:12:34',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10308',
pageId: 'function_image',
userId: 'NateSoares',
edit: '5',
type: 'newEdit',
createdAt: '2016-05-14 04:33:41',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10307',
pageId: 'function_image',
userId: 'NateSoares',
edit: '4',
type: 'newEdit',
createdAt: '2016-05-14 01:43:47',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10299',
pageId: 'function_image',
userId: 'NateSoares',
edit: '3',
type: 'newChild',
createdAt: '2016-05-14 01:37:54',
auxPageId: 'codomain_vs_image',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10295',
pageId: 'function_image',
userId: 'NateSoares',
edit: '3',
type: 'newEdit',
createdAt: '2016-05-14 01:02:59',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10249',
pageId: 'function_image',
userId: 'NateSoares',
edit: '2',
type: 'newEdit',
createdAt: '2016-05-13 23:26:18',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10243',
pageId: 'function_image',
userId: 'NateSoares',
edit: '1',
type: 'newEdit',
createdAt: '2016-05-13 23:17:23',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10240',
pageId: 'function_image',
userId: 'NateSoares',
edit: '1',
type: 'newParent',
createdAt: '2016-05-13 23:17:06',
auxPageId: 'function',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10239',
pageId: 'function_image',
userId: 'NateSoares',
edit: '1',
type: 'newTag',
createdAt: '2016-05-13 23:17:04',
auxPageId: 'definition_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'true',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {
fewerWords: {
likeableId: '3687',
likeableType: 'contentRequest',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '140',
pageId: 'function_image',
requestType: 'fewerWords',
createdAt: '2016-11-04 11:22:08'
},
moreTechnical: {
likeableId: '3688',
likeableType: 'contentRequest',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '141',
pageId: 'function_image',
requestType: 'moreTechnical',
createdAt: '2016-11-04 11:22:27'
}
}
}