{
  localUrl: '../page/group_examples.html',
  arbitalUrl: 'https://arbital.com/p/group_examples',
  rawJsonUrl: '../raw/3t1.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'group_examples',
  edit: '11',
  editSummary: '',
  prevEdit: '9',
  currentEdit: '11',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Group: Examples',
  clickbait: 'Why would anyone have invented groups, anyway? What were the historically motivating examples, and what examples are important today? ',
  textLength: '1570',
  alias: 'group_examples',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-10-21 17:25:45',
  pageCreatorId: 'QiaochuYuan',
  pageCreatedAt: '2016-05-25 20:45:31',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '128',
  text: '[summary:\nExamples of [-3gd groups], including the [-497 symmetric groups] and [-general_linear_group general linear groups].\n]\n\n# The symmetric groups\n\nFor every positive integer $n$ there is a group $S_n$, the [497 symmetric group] of order $n$, defined as the group of all permutations (bijections) $\\{ 1, 2, \\dots n \\} \\to \\{ 1, 2, \\dots n \\}$ (or any other [-3jz] with $n$ elements). The symmetric groups play a central role in group theory: for example, a [3t9 group action] of a group $G$ on a set $X$ with $n$ elements is the same as a [47t homomorphism] $G \\to S_n$. \n\nUp to [4bj conjugacy], a permutation is determined by its [4cg cycle type]. \n\n# The dihedral groups\n\nThe [4cy dihedral groups] $D_{2n}$ are the collections of symmetries of an $n$-sided regular polygon. It has a [5j9 presentation] $\\langle r, f \\mid r^n,  f^2,  (rf)^2 \\rangle$, where $r$ represents rotation by $\\tau/n$ degrees, and $f$ represents reflection. \n\nFor $n > 2$, the dihedral groups are non-commutative.\n\n# The general linear groups\n\nFor every [481 field] $K$ and positive integer $n$ there is a group $GL_n(K)$, the [general_linear_group general linear group] of order $n$ over $K$. Concretely, this is the group of all invertible $n \\times n$ [matrix matrices] with entries in $K$; more abstractly, this is the [automorphism automorphism group] of a [3w0 vector space] of [vector_space_dimension dimension] $n$ over $K$. \n\nIf $K$ is [algebraically_closed_field algebraically closed], then up to conjugacy, a matrix is determined by its [Jordan_normal_form Jordan normal form]. ',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: [
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0'
  ],
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'QiaochuYuan',
    'PatrickStevens',
    'EricBruylant',
    'MarkChimes',
    'DanielSatanove'
  ],
  childIds: [],
  parentIds: [
    'group_mathematics'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: 'group_mathematics',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20230',
      pageId: 'group_examples',
      userId: 'PatrickStevens',
      edit: '11',
      type: 'newEdit',
      createdAt: '2016-10-21 17:25:45',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20195',
      pageId: 'group_examples',
      userId: 'DanielSatanove',
      edit: '9',
      type: 'newEdit',
      createdAt: '2016-10-20 23:50:20',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15020',
      pageId: 'group_examples',
      userId: 'MarkChimes',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-07-01 03:17:21',
      auxPageId: 'needs_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15018',
      pageId: 'group_examples',
      userId: 'MarkChimes',
      edit: '8',
      type: 'newEdit',
      createdAt: '2016-07-01 03:16:59',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14399',
      pageId: 'group_examples',
      userId: 'EricBruylant',
      edit: '7',
      type: 'newEdit',
      createdAt: '2016-06-22 17:56:35',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14398',
      pageId: 'group_examples',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-06-22 17:56:21',
      auxPageId: 'needs_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14397',
      pageId: 'group_examples',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-06-22 17:56:04',
      auxPageId: 'needs_technical_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14395',
      pageId: 'group_examples',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-06-22 17:56:01',
      auxPageId: 'needs_technical_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12633',
      pageId: 'group_examples',
      userId: 'PatrickStevens',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-06-14 12:34:04',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12543',
      pageId: 'group_examples',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-06-13 16:10:40',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10994',
      pageId: 'group_examples',
      userId: 'QiaochuYuan',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-05-25 21:47:57',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10945',
      pageId: 'group_examples',
      userId: 'QiaochuYuan',
      edit: '0',
      type: 'newAlias',
      createdAt: '2016-05-25 21:04:35',
      auxPageId: '',
      oldSettingsValue: 'groups_by_example',
      newSettingsValue: 'group_examples'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10946',
      pageId: 'group_examples',
      userId: 'QiaochuYuan',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-05-25 21:04:35',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10933',
      pageId: 'group_examples',
      userId: 'QiaochuYuan',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-05-25 20:47:24',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10930',
      pageId: 'group_examples',
      userId: 'QiaochuYuan',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-05-25 20:45:31',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10921',
      pageId: 'group_examples',
      userId: 'QiaochuYuan',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-05-25 20:41:34',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}