{ localUrl: '../page/group_orbits_partition.html', arbitalUrl: 'https://arbital.com/p/group_orbits_partition', rawJsonUrl: '../raw/4mg.json', likeableId: '2778', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'EricBruylant' ], pageId: 'group_orbits_partition', edit: '1', editSummary: '', prevEdit: '0', currentEdit: '1', wasPublished: 'true', type: 'wiki', title: 'Group orbits partition', clickbait: 'When a group acts on a set, the set falls naturally into distinct pieces, where the group action only permutes elements within any given piece, not between them.', textLength: '1054', alias: 'group_orbits_partition', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-06-20 08:55:28', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-06-20 08:55:28', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '14', text: 'Let $G$ be a [-3gd], [3t9 acting] on the set $X$.\nThen the [group_orbit orbits] of $X$ under $G$ form a [set_partition partition] of $X$.\n\n# Proof\n\nWe need to show that every element of $X$ is in an orbit, and that if $x \\in X$ lies in two orbits then they are the same orbit.\n\nCertainly $x \\in X$ lies in an orbit: it lies in the orbit $\\mathrm{Orb}_G(x)$, since $e(x) = x$ where $e$ is the identity of $G$.\n(This follows by the definition of an action.)\n\nSuppose $x$ lies in both $\\mathrm{Orb}_G(a)$ and $\\mathrm{Orb}_G(b)$, where $a, b \\in X$.\nThen $g(a) = h(b) = x$ for some $g, h \\in G$.\nThis tells us that $h^{-1}g(a) = b$, so in fact $\\mathrm{Orb}_G(a) = \\mathrm{Orb}_G(b)$; it is an exercise to prove this formally.\n\n%%hidden(Show solution):\nIndeed, if $r \\in \\mathrm{Orb}_G(b)$, then $r = k(b)$, say, some $k \\in G$.\nThen $r = k(h^{-1}g(a)) = kh^{-1}g(a)$, so $r \\in \\mathrm{Orb}_G(a)$.\n\nConversely, if $r \\in \\mathrm{Orb}_G(a)$, then $r = m(b)$, say, some $m \\in G$.\nThen $r = m(g^{-1}h(b)) = m g^{-1} h (b)$, so $r \\in \\mathrm{Orb}_G(b)$.\n%%\n\n', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens' ], childIds: [], parentIds: [ 'group_action' ], commentIds: [], questionIds: [], tagIds: [ 'proof_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15161', pageId: 'group_orbits_partition', userId: 'PatrickStevens', edit: '0', type: 'newTag', createdAt: '2016-07-03 08:10:12', auxPageId: 'proof_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14088', pageId: 'group_orbits_partition', userId: 'PatrickStevens', edit: '0', type: 'newParent', createdAt: '2016-06-20 08:55:30', auxPageId: 'group_action', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14086', pageId: 'group_orbits_partition', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-06-20 08:55:28', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }