{
localUrl: '../page/group_orbits_partition.html',
arbitalUrl: 'https://arbital.com/p/group_orbits_partition',
rawJsonUrl: '../raw/4mg.json',
likeableId: '2778',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'EricBruylant'
],
pageId: 'group_orbits_partition',
edit: '1',
editSummary: '',
prevEdit: '0',
currentEdit: '1',
wasPublished: 'true',
type: 'wiki',
title: 'Group orbits partition',
clickbait: 'When a group acts on a set, the set falls naturally into distinct pieces, where the group action only permutes elements within any given piece, not between them.',
textLength: '1054',
alias: 'group_orbits_partition',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-06-20 08:55:28',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-06-20 08:55:28',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '14',
text: 'Let $G$ be a [-3gd], [3t9 acting] on the set $X$.\nThen the [group_orbit orbits] of $X$ under $G$ form a [set_partition partition] of $X$.\n\n# Proof\n\nWe need to show that every element of $X$ is in an orbit, and that if $x \\in X$ lies in two orbits then they are the same orbit.\n\nCertainly $x \\in X$ lies in an orbit: it lies in the orbit $\\mathrm{Orb}_G(x)$, since $e(x) = x$ where $e$ is the identity of $G$.\n(This follows by the definition of an action.)\n\nSuppose $x$ lies in both $\\mathrm{Orb}_G(a)$ and $\\mathrm{Orb}_G(b)$, where $a, b \\in X$.\nThen $g(a) = h(b) = x$ for some $g, h \\in G$.\nThis tells us that $h^{-1}g(a) = b$, so in fact $\\mathrm{Orb}_G(a) = \\mathrm{Orb}_G(b)$; it is an exercise to prove this formally.\n\n%%hidden(Show solution):\nIndeed, if $r \\in \\mathrm{Orb}_G(b)$, then $r = k(b)$, say, some $k \\in G$.\nThen $r = k(h^{-1}g(a)) = kh^{-1}g(a)$, so $r \\in \\mathrm{Orb}_G(a)$.\n\nConversely, if $r \\in \\mathrm{Orb}_G(a)$, then $r = m(b)$, say, some $m \\in G$.\nThen $r = m(g^{-1}h(b)) = m g^{-1} h (b)$, so $r \\in \\mathrm{Orb}_G(b)$.\n%%\n\n',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens'
],
childIds: [],
parentIds: [
'group_action'
],
commentIds: [],
questionIds: [],
tagIds: [
'proof_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15161',
pageId: 'group_orbits_partition',
userId: 'PatrickStevens',
edit: '0',
type: 'newTag',
createdAt: '2016-07-03 08:10:12',
auxPageId: 'proof_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14088',
pageId: 'group_orbits_partition',
userId: 'PatrickStevens',
edit: '0',
type: 'newParent',
createdAt: '2016-06-20 08:55:30',
auxPageId: 'group_action',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14086',
pageId: 'group_orbits_partition',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-20 08:55:28',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}