{
  localUrl: '../page/group_theory_examples.html',
  arbitalUrl: 'https://arbital.com/p/group_theory_examples',
  rawJsonUrl: '../raw/3t6.json',
  likeableId: '2546',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricRogstad'
  ],
  pageId: 'group_theory_examples',
  edit: '15',
  editSummary: '',
  prevEdit: '14',
  currentEdit: '15',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Group theory: Examples',
  clickbait: 'What does thinking in terms of group theory actually look like? And what does it buy you? ',
  textLength: '2679',
  alias: 'group_theory_examples',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'QiaochuYuan',
  editCreatedAt: '2016-05-25 22:34:31',
  pageCreatorId: 'QiaochuYuan',
  pageCreatedAt: '2016-05-25 21:08:44',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '80',
  text: '# Even and odd functions\n\nRecall that a function $f : \\mathbb{R} \\to \\mathbb{R}$ is [even_function even] if $f(-x) = f(x)$, and [odd_function odd] if $f(-x) = - f(x)$. A typical example of an even function is $f(x) = x^2$ or $f(x) = \\cos x$, while a typical example of an odd function is $f(x) = x^3$ or $f(x) =   \\sin x$. \n\nWe can think about evenness and oddness in terms of [3g8 group theory] as follows. There is a group called the [cyclic_group cyclic group] $C_2$ of [3gg order] $2$ acting on the set of functions $\\mathbb{R} \\to \\mathbb{R}$: in other words, each element of the group describes a function of [3sz type]\n\n$$ (\\mathbb{R} \\to \\mathbb{R}) \\to (\\mathbb{R} \\to \\mathbb{R}) $$\n\nmeaning that it takes as input a function $\\mathbb{R} \\to \\mathbb{R}$ and returns as output another function $\\mathbb{R} \\to \\mathbb{R}$.\n\n$C_2$ has two elements which we'll call $1$ and $-1$. $1$ is the identity element: it acts on functions by sending a function $f(x)$ to the same function $f(x)$ again. $-1$ sends a function $f(x)$ to the function $f(-x)$, which visually corresponds to reflecting the graph of $f(x)$ through the y-axis. The group multiplication is what the names of the group elements suggests, and in particular $(-1) \\times (-1) = 1$, which corresponds to the fact that $f(-(-x)) = f(x)$. \n\nAny time a group $G$ [3t9 acts] on a set $X$, it's interesting to ask what elements are [invariant_under_a_group_action invariant] under that group action. Here the invariants of functions under the action of $C_2$ above are the even functions, and they form a [subspace] of the [vector_space vector space] of all functions. \n\nIt turns out that every function is uniquely the sum of an even and an odd function, as follows:\n\n$$f(x) = \\underbrace{\\frac{f(x) + f(-x)}{2}}_{\\text{even}} + \\underbrace{\\frac{f(x) - f(-x)}{2}}_{\\text{odd}}.$$\n\nThis is a special case of various more general facts in [3tn representation theory], and in particular can be thought of as the simplest case of the [discrete_Fourier_transform discrete Fourier transform], which in turn is a [mathematical_toy_model toy model] of the theory of [Fourier_series Fourier series] and the [Fourier_transform Fourier transform]. \n\nIt's also interesting to observe that the cyclic group $C_2$ shows up in lots of other places in mathematics as well. For example, it is also the group describing how even and odd numbers add<sup>1</sup> (where even corresponds to $1$ and odd corresponds to $-1$); this is the simplest case of [modular_arithmetic modular arithmetic]. \n\n<sup>1</sup><sub>That is: an even plus an even make an even, an odd plus an odd make an even, and an even plus an odd make an odd.</sub>',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '2',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'QiaochuYuan',
    'EricRogstad'
  ],
  childIds: [],
  parentIds: [
    'group_theory'
  ],
  commentIds: [
    '3td'
  ],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: 'group_theory',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '1',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '11050',
      pageId: 'group_theory_examples',
      userId: 'QiaochuYuan',
      edit: '15',
      type: 'newEdit',
      createdAt: '2016-05-25 22:34:31',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '11045',
      pageId: 'group_theory_examples',
      userId: 'QiaochuYuan',
      edit: '14',
      type: 'newEdit',
      createdAt: '2016-05-25 22:33:38',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '11032',
      pageId: 'group_theory_examples',
      userId: 'QiaochuYuan',
      edit: '13',
      type: 'newEdit',
      createdAt: '2016-05-25 22:20:37',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '11030',
      pageId: 'group_theory_examples',
      userId: 'EricRogstad',
      edit: '12',
      type: 'newEdit',
      createdAt: '2016-05-25 22:14:34',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '11029',
      pageId: 'group_theory_examples',
      userId: 'EricRogstad',
      edit: '11',
      type: 'newEdit',
      createdAt: '2016-05-25 22:13:07',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '11028',
      pageId: 'group_theory_examples',
      userId: 'EricRogstad',
      edit: '10',
      type: 'newEdit',
      createdAt: '2016-05-25 22:10:40',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '11027',
      pageId: 'group_theory_examples',
      userId: 'EricRogstad',
      edit: '9',
      type: 'newEdit',
      createdAt: '2016-05-25 22:10:01',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '11018',
      pageId: 'group_theory_examples',
      userId: 'EricRogstad',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-05-25 22:05:46',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10997',
      pageId: 'group_theory_examples',
      userId: 'QiaochuYuan',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-05-25 21:50:52',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10958',
      pageId: 'group_theory_examples',
      userId: 'QiaochuYuan',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-05-25 21:11:44',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10957',
      pageId: 'group_theory_examples',
      userId: 'QiaochuYuan',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-05-25 21:10:05',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10956',
      pageId: 'group_theory_examples',
      userId: 'QiaochuYuan',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-05-25 21:09:39',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10953',
      pageId: 'group_theory_examples',
      userId: 'QiaochuYuan',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-05-25 21:08:44',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10948',
      pageId: 'group_theory_examples',
      userId: 'QiaochuYuan',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-05-25 21:06:21',
      auxPageId: 'group_theory',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}