{ localUrl: '../page/group_theory_examples.html', arbitalUrl: 'https://arbital.com/p/group_theory_examples', rawJsonUrl: '../raw/3t6.json', likeableId: '2546', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'EricRogstad' ], pageId: 'group_theory_examples', edit: '15', editSummary: '', prevEdit: '14', currentEdit: '15', wasPublished: 'true', type: 'wiki', title: 'Group theory: Examples', clickbait: 'What does thinking in terms of group theory actually look like? And what does it buy you? ', textLength: '2679', alias: 'group_theory_examples', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'QiaochuYuan', editCreatedAt: '2016-05-25 22:34:31', pageCreatorId: 'QiaochuYuan', pageCreatedAt: '2016-05-25 21:08:44', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '80', text: '# Even and odd functions\n\nRecall that a function $f : \\mathbb{R} \\to \\mathbb{R}$ is [even_function even] if $f(-x) = f(x)$, and [odd_function odd] if $f(-x) = - f(x)$. A typical example of an even function is $f(x) = x^2$ or $f(x) = \\cos x$, while a typical example of an odd function is $f(x) = x^3$ or $f(x) = \\sin x$. \n\nWe can think about evenness and oddness in terms of [3g8 group theory] as follows. There is a group called the [cyclic_group cyclic group] $C_2$ of [3gg order] $2$ acting on the set of functions $\\mathbb{R} \\to \\mathbb{R}$: in other words, each element of the group describes a function of [3sz type]\n\n$$ (\\mathbb{R} \\to \\mathbb{R}) \\to (\\mathbb{R} \\to \\mathbb{R}) $$\n\nmeaning that it takes as input a function $\\mathbb{R} \\to \\mathbb{R}$ and returns as output another function $\\mathbb{R} \\to \\mathbb{R}$.\n\n$C_2$ has two elements which we'll call $1$ and $-1$. $1$ is the identity element: it acts on functions by sending a function $f(x)$ to the same function $f(x)$ again. $-1$ sends a function $f(x)$ to the function $f(-x)$, which visually corresponds to reflecting the graph of $f(x)$ through the y-axis. The group multiplication is what the names of the group elements suggests, and in particular $(-1) \\times (-1) = 1$, which corresponds to the fact that $f(-(-x)) = f(x)$. \n\nAny time a group $G$ [3t9 acts] on a set $X$, it's interesting to ask what elements are [invariant_under_a_group_action invariant] under that group action. Here the invariants of functions under the action of $C_2$ above are the even functions, and they form a [subspace] of the [vector_space vector space] of all functions. \n\nIt turns out that every function is uniquely the sum of an even and an odd function, as follows:\n\n$$f(x) = \\underbrace{\\frac{f(x) + f(-x)}{2}}_{\\text{even}} + \\underbrace{\\frac{f(x) - f(-x)}{2}}_{\\text{odd}}.$$\n\nThis is a special case of various more general facts in [3tn representation theory], and in particular can be thought of as the simplest case of the [discrete_Fourier_transform discrete Fourier transform], which in turn is a [mathematical_toy_model toy model] of the theory of [Fourier_series Fourier series] and the [Fourier_transform Fourier transform]. \n\nIt's also interesting to observe that the cyclic group $C_2$ shows up in lots of other places in mathematics as well. For example, it is also the group describing how even and odd numbers add<sup>1</sup> (where even corresponds to $1$ and odd corresponds to $-1$); this is the simplest case of [modular_arithmetic modular arithmetic]. \n\n<sup>1</sup><sub>That is: an even plus an even make an even, an odd plus an odd make an even, and an even plus an odd make an odd.</sub>', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '2', maintainerCount: '2', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'QiaochuYuan', 'EricRogstad' ], childIds: [], parentIds: [ 'group_theory' ], commentIds: [ '3td' ], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: 'group_theory', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '1', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11050', pageId: 'group_theory_examples', userId: 'QiaochuYuan', edit: '15', type: 'newEdit', createdAt: '2016-05-25 22:34:31', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11045', pageId: 'group_theory_examples', userId: 'QiaochuYuan', edit: '14', type: 'newEdit', createdAt: '2016-05-25 22:33:38', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11032', pageId: 'group_theory_examples', userId: 'QiaochuYuan', edit: '13', type: 'newEdit', createdAt: '2016-05-25 22:20:37', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11030', pageId: 'group_theory_examples', userId: 'EricRogstad', edit: '12', type: 'newEdit', createdAt: '2016-05-25 22:14:34', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11029', pageId: 'group_theory_examples', userId: 'EricRogstad', edit: '11', type: 'newEdit', createdAt: '2016-05-25 22:13:07', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11028', pageId: 'group_theory_examples', userId: 'EricRogstad', edit: '10', type: 'newEdit', createdAt: '2016-05-25 22:10:40', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11027', pageId: 'group_theory_examples', userId: 'EricRogstad', edit: '9', type: 'newEdit', createdAt: '2016-05-25 22:10:01', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11018', pageId: 'group_theory_examples', userId: 'EricRogstad', edit: '6', type: 'newEdit', createdAt: '2016-05-25 22:05:46', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10997', pageId: 'group_theory_examples', userId: 'QiaochuYuan', edit: '5', type: 'newEdit', createdAt: '2016-05-25 21:50:52', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10958', pageId: 'group_theory_examples', userId: 'QiaochuYuan', edit: '4', type: 'newEdit', createdAt: '2016-05-25 21:11:44', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10957', pageId: 'group_theory_examples', userId: 'QiaochuYuan', edit: '3', type: 'newEdit', createdAt: '2016-05-25 21:10:05', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10956', pageId: 'group_theory_examples', userId: 'QiaochuYuan', edit: '2', type: 'newEdit', createdAt: '2016-05-25 21:09:39', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10953', pageId: 'group_theory_examples', userId: 'QiaochuYuan', edit: '1', type: 'newEdit', createdAt: '2016-05-25 21:08:44', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10948', pageId: 'group_theory_examples', userId: 'QiaochuYuan', edit: '1', type: 'newParent', createdAt: '2016-05-25 21:06:21', auxPageId: 'group_theory', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }