{
localUrl: '../page/kernel_of_ring_homomorphism.html',
arbitalUrl: 'https://arbital.com/p/kernel_of_ring_homomorphism',
rawJsonUrl: '../raw/5r6.json',
likeableId: '3324',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'EricBruylant'
],
pageId: 'kernel_of_ring_homomorphism',
edit: '4',
editSummary: '',
prevEdit: '3',
currentEdit: '4',
wasPublished: 'true',
type: 'wiki',
title: 'Kernel of ring homomorphism',
clickbait: 'The kernel of a ring homomorphism is the collection of things which that homomorphism sends to 0.',
textLength: '1537',
alias: 'kernel_of_ring_homomorphism',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-08-04 19:38:29',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-08-03 16:52:59',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '22',
text: '[summary: The kernel of a [-ring_homomorphism] is the collection of elements which the homomorphism sends to $0$.]\n\nGiven a [-ring_homomorphism] $f: R \\to S$ between [3gq rings] $R$ and $S$, we say the **kernel** of $f$ is the collection of elements of $R$ which $f$ sends to the zero element of $S$.\n\nFormally, it is $$\\{ r \\in R \\mid f(r) = 0_S \\}$$\nwhere $0_S$ is the zero element of $S$.\n\n# Examples\n\n- Given the "identity" (or "do nothing") ring homomorphism $\\mathrm{id}: \\mathbb{Z} \\to \\mathbb{Z}$, which sends $n$ to $n$, the kernel is just $\\{ 0 \\}$.\n- Given the ring homomorphism $\\mathbb{Z} \\to \\mathbb{Z}$ taking $n \\mapsto n \\pmod{2}$ (using the usual shorthand for [-5ns]), the kernel is the set of even numbers.\n\n# Properties\n\nKernels of ring homomorphisms are very important because they are precisely [ideal_ring_theory ideals]. ([5r9 Proof.])\nIn a way, "ideal" is to "ring" as "[-576]" is to "[3gd group]", and certainly [subring_ring_theory subrings] are much less interesting than ideals; a lot of ring theory is about the study of ideals.\n\nThe kernel of a ring homomorphism always contains $0$, because a ring homomorphism always sends $0$ to $0$.\nThis is because it may be viewed as a [-47t] acting on the underlying additive group of the ring in question, and [49z the image of the identity is the identity] in a group.\n\nIf the kernel of a ring homomorphism contains $1$, then the ring homomorphism sends everything to $0$.\nIndeed, if $f(1) = 0$, then $f(r) = f(r \\times 1) = f(r) \\times f(1) = f(r) \\times 0 = 0$.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens'
],
childIds: [],
parentIds: [
'algebraic_ring'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18369',
pageId: 'kernel_of_ring_homomorphism',
userId: 'PatrickStevens',
edit: '4',
type: 'newEdit',
createdAt: '2016-08-04 19:38:29',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18238',
pageId: 'kernel_of_ring_homomorphism',
userId: 'PatrickStevens',
edit: '3',
type: 'newEdit',
createdAt: '2016-08-03 16:54:18',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18237',
pageId: 'kernel_of_ring_homomorphism',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-08-03 16:53:14',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18236',
pageId: 'kernel_of_ring_homomorphism',
userId: 'PatrickStevens',
edit: '0',
type: 'newParent',
createdAt: '2016-08-03 16:53:01',
auxPageId: 'algebraic_ring',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18234',
pageId: 'kernel_of_ring_homomorphism',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-08-03 16:52:59',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}