{
  localUrl: '../page/least_common_multiple.html',
  arbitalUrl: 'https://arbital.com/p/least_common_multiple',
  rawJsonUrl: '../raw/65x.json',
  likeableId: '3536',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '2',
  dislikeCount: '0',
  likeScore: '2',
  individualLikes: [
    'JaimeSevillaMolina',
    'JohannesSchmitt'
  ],
  pageId: 'least_common_multiple',
  edit: '4',
  editSummary: '',
  prevEdit: '3',
  currentEdit: '4',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Least common multiple',
  clickbait: '',
  textLength: '2002',
  alias: 'least_common_multiple',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'KevinClancy',
  editCreatedAt: '2016-09-25 21:50:36',
  pageCreatorId: 'JohannesSchmitt',
  pageCreatedAt: '2016-09-24 09:10:09',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '28',
  text: '[summary: The **least common multiple (LCM)** of two positive  [45h natural numbers]  a, b is the smallest natural number that both a and b divide, so for instance LCM(12,10) = 60.]\n\nGiven two positive natural numbers $a$ and $b$, their **least common multiple** $\\text{LCM}(a,b)$ is the smallest natural number divided by both $a$ and $b$. As an example take $a=12, b=10$, then the smallest number divided by both of them is $60$.\n\nThere is an equivalent definition of the LCM, which is strange at first glance but turns out to be mathematically much more suited to generalisation: the LCM $l$ of $a$ and $b$ is the natural number such that for every number $c$ divisible by both $a$ and $b$, we have $l$ divides $c$.\nThis describes the LCM as a [3rc poset least upper bound] (namely the [-3rb] $\\mathbb{N}$ under the relation of divisibility).\n\nNote that for $a$, $b$ given, their product $ab$ is a natural number divided by both of them. The least common multiple $\\text{LCM}(a,b)$ divides the product $ab$ and for $\\text{GCD}(a,b)$ the [-5mw] of $a, b$ we have the formula\n$$a\\cdot b = \\text{GCD}(a,b) \\cdot \\text{LCM}(a,b). $$\nThis formula offers a fast way to compute the least common multiple: one can compute $\\text{GCD}(a,b)$ using the [euclidean_algorithm] and then divide the product $ab$ by this number.\n\nIn practice, for small numbers $a,b$ it is often easier to use their factorization into [4mf prime numbers]. In the example above we have $12=2 \\cdot 2 \\cdot 3$ and $10=2 \\cdot 5$, so if we want to build the smallest number $c$ divided by both of them, we can take $60=2 \\cdot 2 \\cdot 3 \\cdot 5$. Indeed, to compute $c$ look at each prime number $p$ dividing one of $a,b$ (in the example $p=2,3,5$). Then writing $c$ as a product we take the factor $p$ the maximal number of times it appears in $a$ and $b$. The factor $p=2$ appears twice in $12$ and once in $10$, so we take it two times. The factor $3$ appears once in $12$ and zero times in $10$, so we only take it once, and so on.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '2',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens',
    'JohannesSchmitt',
    'KevinClancy'
  ],
  childIds: [],
  parentIds: [
    'math'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '3549',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '19728',
      pageId: 'least_common_multiple',
      userId: 'KevinClancy',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-09-25 21:50:36',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19710',
      pageId: 'least_common_multiple',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-09-24 10:30:21',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19709',
      pageId: 'least_common_multiple',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-09-24 10:29:49',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19708',
      pageId: 'least_common_multiple',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-09-24 10:26:36',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3540',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '19706',
      pageId: 'least_common_multiple',
      userId: 'JohannesSchmitt',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-09-24 09:10:09',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}