{
localUrl: '../page/log2_of_3_never_ends.html',
arbitalUrl: 'https://arbital.com/p/log2_of_3_never_ends',
rawJsonUrl: '../raw/4n8.json',
likeableId: '2793',
likeableType: 'page',
myLikeValue: '0',
likeCount: '4',
dislikeCount: '0',
likeScore: '4',
individualLikes: [
'EricBruylant',
'NateSoares',
'ConnorFlexman2',
'EricRogstad'
],
pageId: 'log2_of_3_never_ends',
edit: '9',
editSummary: '',
prevEdit: '8',
currentEdit: '9',
wasPublished: 'true',
type: 'wiki',
title: 'Why is the decimal expansion of log2(3) infinite?',
clickbait: 'Because 2 and 3 are relatively prime.',
textLength: '2041',
alias: 'log2_of_3_never_ends',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'NateSoares',
editCreatedAt: '2016-07-04 15:55:58',
pageCreatorId: 'NateSoares',
pageCreatedAt: '2016-06-20 23:39:45',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '59',
text: '[summary: \nIt takes more than one but less than two [binary_digit binary digits] to encode a [4sj 3-digit], so $\\log_2(3)$ must be between 1 and 2. ([427 Wait, what?]). It takes more than 15 but less than 16 binary digits to encode ten 3-digits, so $10 \\cdot \\log_2(3)$ must be between 15 and 16, which means $1.5 < \\log_2(3) < 1.6.$ It takes more than 158 but less than 159 binary digits to encode a hundred 3-digits, so $1.58 < \\log_2(3) < 1.59.$ And so on. Because no power of 3 is ever equal to any power of 2, $10^n \\cdot \\log_2(3)$ will never quite be a whole number, no matter how large $n$ is.]\n\n$\\log_2(3)$ starts with\n\n1.5849625007211561814537389439478165087598144076924810604557526545410982277943585625222804749180882420909806624750591673437175524410609248221420839506216982994936575922385852344415825363027476853069780516875995544737266834624612364248850047581810676961316404807130823233281262445248670633898014837234235783662478390118977006466312634223363341821270106098049177472541357330110499026268818251703576994712157113638912494135752192998699040767081539505404488360\n\nand goes on indefinitely. Why is it 1.58... in particular? Well, it takes more than one but less than two [binary_digit binary digits] to encode a [4sj 3-digit], so $\\log_2(3)$ must be between 1 and 2. ([427 Wait, what?]). It takes more than 15 but less than 16 binary digits to encode ten 3-digits, so $10 \\cdot \\log_2(3)$ must be between 15 and 16, which means $1.5 < \\log_2(3) < 1.6.$ It takes more than 158 but less than 159 binary digits to encode a hundred 3-digits, so $1.58 < \\log_2(3) < 1.59.$ And so on. Because no power of 3 is ever equal to any power of 2, $10^n \\cdot \\log_2(3)$ will never quite be a whole number, no matter how large $n$ is.\n\nThus, $\\log_2(3)$ has no finite decimal expansion, because $3$ is not a [4zq rational] [-power] of $2$. Using this argument, we can see that $\\log_b(x)$ is an integer if (and only if) $x$ is a power of $b$, and that $\\log_b(x)$ only has a finite expansion if some power of $x$ is a power of $b.$',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'NateSoares'
],
childIds: [],
parentIds: [
'logarithm'
],
commentIds: [
'51j'
],
questionIds: [],
tagIds: [
'start_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15251',
pageId: 'log2_of_3_never_ends',
userId: 'NateSoares',
edit: '9',
type: 'newEdit',
createdAt: '2016-07-04 15:55:58',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15249',
pageId: 'log2_of_3_never_ends',
userId: 'NateSoares',
edit: '8',
type: 'newEdit',
createdAt: '2016-07-04 15:54:48',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15224',
pageId: 'log2_of_3_never_ends',
userId: 'NateSoares',
edit: '7',
type: 'newEdit',
createdAt: '2016-07-04 06:29:32',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15218',
pageId: 'log2_of_3_never_ends',
userId: 'NateSoares',
edit: '0',
type: 'deleteTag',
createdAt: '2016-07-04 06:25:06',
auxPageId: 'stub_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15216',
pageId: 'log2_of_3_never_ends',
userId: 'NateSoares',
edit: '0',
type: 'newTag',
createdAt: '2016-07-04 06:25:05',
auxPageId: 'start_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14592',
pageId: 'log2_of_3_never_ends',
userId: 'NateSoares',
edit: '5',
type: 'newEdit',
createdAt: '2016-06-25 16:09:15',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14591',
pageId: 'log2_of_3_never_ends',
userId: 'NateSoares',
edit: '4',
type: 'newEdit',
createdAt: '2016-06-25 16:06:10',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14327',
pageId: 'log2_of_3_never_ends',
userId: 'NateSoares',
edit: '3',
type: 'newEdit',
createdAt: '2016-06-22 00:07:26',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14326',
pageId: 'log2_of_3_never_ends',
userId: 'NateSoares',
edit: '2',
type: 'newEdit',
createdAt: '2016-06-22 00:06:33',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14193',
pageId: 'log2_of_3_never_ends',
userId: 'NateSoares',
edit: '0',
type: 'newParent',
createdAt: '2016-06-20 23:39:47',
auxPageId: 'logarithm',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14194',
pageId: 'log2_of_3_never_ends',
userId: 'NateSoares',
edit: '0',
type: 'newTag',
createdAt: '2016-06-20 23:39:47',
auxPageId: 'stub_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14191',
pageId: 'log2_of_3_never_ends',
userId: 'NateSoares',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-20 23:39:45',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}