{ localUrl: '../page/log2_of_3_never_ends.html', arbitalUrl: 'https://arbital.com/p/log2_of_3_never_ends', rawJsonUrl: '../raw/4n8.json', likeableId: '2793', likeableType: 'page', myLikeValue: '0', likeCount: '4', dislikeCount: '0', likeScore: '4', individualLikes: [ 'EricBruylant', 'NateSoares', 'ConnorFlexman2', 'EricRogstad' ], pageId: 'log2_of_3_never_ends', edit: '9', editSummary: '', prevEdit: '8', currentEdit: '9', wasPublished: 'true', type: 'wiki', title: 'Why is the decimal expansion of log2(3) infinite?', clickbait: 'Because 2 and 3 are relatively prime.', textLength: '2041', alias: 'log2_of_3_never_ends', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'NateSoares', editCreatedAt: '2016-07-04 15:55:58', pageCreatorId: 'NateSoares', pageCreatedAt: '2016-06-20 23:39:45', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '59', text: '[summary: \nIt takes more than one but less than two [binary_digit binary digits] to encode a [4sj 3-digit], so $\\log_2(3)$ must be between 1 and 2. ([427 Wait, what?]). It takes more than 15 but less than 16 binary digits to encode ten 3-digits, so $10 \\cdot \\log_2(3)$ must be between 15 and 16, which means $1.5 < \\log_2(3) < 1.6.$ It takes more than 158 but less than 159 binary digits to encode a hundred 3-digits, so $1.58 < \\log_2(3) < 1.59.$ And so on. Because no power of 3 is ever equal to any power of 2, $10^n \\cdot \\log_2(3)$ will never quite be a whole number, no matter how large $n$ is.]\n\n$\\log_2(3)$ starts with\n\n1.5849625007211561814537389439478165087598144076924810604557526545410982277943585625222804749180882420909806624750591673437175524410609248221420839506216982994936575922385852344415825363027476853069780516875995544737266834624612364248850047581810676961316404807130823233281262445248670633898014837234235783662478390118977006466312634223363341821270106098049177472541357330110499026268818251703576994712157113638912494135752192998699040767081539505404488360\n\nand goes on indefinitely. Why is it 1.58... in particular? Well, it takes more than one but less than two [binary_digit binary digits] to encode a [4sj 3-digit], so $\\log_2(3)$ must be between 1 and 2. ([427 Wait, what?]). It takes more than 15 but less than 16 binary digits to encode ten 3-digits, so $10 \\cdot \\log_2(3)$ must be between 15 and 16, which means $1.5 < \\log_2(3) < 1.6.$ It takes more than 158 but less than 159 binary digits to encode a hundred 3-digits, so $1.58 < \\log_2(3) < 1.59.$ And so on. Because no power of 3 is ever equal to any power of 2, $10^n \\cdot \\log_2(3)$ will never quite be a whole number, no matter how large $n$ is.\n\nThus, $\\log_2(3)$ has no finite decimal expansion, because $3$ is not a [4zq rational] [-power] of $2$. Using this argument, we can see that $\\log_b(x)$ is an integer if (and only if) $x$ is a power of $b$, and that $\\log_b(x)$ only has a finite expansion if some power of $x$ is a power of $b.$', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'NateSoares' ], childIds: [], parentIds: [ 'logarithm' ], commentIds: [ '51j' ], questionIds: [], tagIds: [ 'start_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15251', pageId: 'log2_of_3_never_ends', userId: 'NateSoares', edit: '9', type: 'newEdit', createdAt: '2016-07-04 15:55:58', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15249', pageId: 'log2_of_3_never_ends', userId: 'NateSoares', edit: '8', type: 'newEdit', createdAt: '2016-07-04 15:54:48', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15224', pageId: 'log2_of_3_never_ends', userId: 'NateSoares', edit: '7', type: 'newEdit', createdAt: '2016-07-04 06:29:32', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15218', pageId: 'log2_of_3_never_ends', userId: 'NateSoares', edit: '0', type: 'deleteTag', createdAt: '2016-07-04 06:25:06', auxPageId: 'stub_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15216', pageId: 'log2_of_3_never_ends', userId: 'NateSoares', edit: '0', type: 'newTag', createdAt: '2016-07-04 06:25:05', auxPageId: 'start_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14592', pageId: 'log2_of_3_never_ends', userId: 'NateSoares', edit: '5', type: 'newEdit', createdAt: '2016-06-25 16:09:15', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14591', pageId: 'log2_of_3_never_ends', userId: 'NateSoares', edit: '4', type: 'newEdit', createdAt: '2016-06-25 16:06:10', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14327', pageId: 'log2_of_3_never_ends', userId: 'NateSoares', edit: '3', type: 'newEdit', createdAt: '2016-06-22 00:07:26', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14326', pageId: 'log2_of_3_never_ends', userId: 'NateSoares', edit: '2', type: 'newEdit', createdAt: '2016-06-22 00:06:33', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14193', pageId: 'log2_of_3_never_ends', userId: 'NateSoares', edit: '0', type: 'newParent', createdAt: '2016-06-20 23:39:47', auxPageId: 'logarithm', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14194', pageId: 'log2_of_3_never_ends', userId: 'NateSoares', edit: '0', type: 'newTag', createdAt: '2016-06-20 23:39:47', auxPageId: 'stub_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14191', pageId: 'log2_of_3_never_ends', userId: 'NateSoares', edit: '1', type: 'newEdit', createdAt: '2016-06-20 23:39:45', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }