{
  localUrl: '../page/log_tutorial_end.html',
  arbitalUrl: 'https://arbital.com/p/log_tutorial_end',
  rawJsonUrl: '../raw/4h2.json',
  likeableId: '2745',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '5',
  dislikeCount: '0',
  likeScore: '5',
  individualLikes: [
    'EricBruylant',
    'NateSoares',
    'EricRogstad',
    'SzymonSlawinski',
    'JimmySantillan'
  ],
  pageId: 'log_tutorial_end',
  edit: '5',
  editSummary: '',
  prevEdit: '4',
  currentEdit: '5',
  wasPublished: 'true',
  type: 'wiki',
  title: 'The End (of the basic log tutorial)',
  clickbait: '',
  textLength: '2070',
  alias: 'log_tutorial_end',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'AlexeiAndreev',
  editCreatedAt: '2016-09-21 01:27:16',
  pageCreatorId: 'NateSoares',
  pageCreatedAt: '2016-06-17 07:05:44',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '185',
  text: 'That concludes our introductory tutorial on logarithms! You have made it to the end.\n\nThroughout this tutorial, we saw that the logarithm base $b$ of $x$ calculates the number of $b$-factors in $x.$ Hopefully, this claim now means more to you than it once did. We've seen a number of different ways of interpreting what logarithms are doing, including:\n\n- $\\log_b(x) = y$ means [416 "it takes about $y$ digits to write $x$ in base $b$."]\n- $\\log_b(x) = y$ means [44l "it takes about $y$ $b$-digits to emulate an $x$-digit."]\n- $\\log_b(x) = y$ means [45q "if the space of possible messages to send goes up by a factor of $x$, then the cost, in $b$-digits, goes up by a factor of $y$]\n- And, simply, $\\log_b(x) = y$ means that if you start with 1 and grow it by factors of $b$, then after $y$ iterations of this your result will be $x.$\n\nFor example, $\\log_2(100)$ counts the number of doublings that constitute a factor-of-100 increase. (The answer is more than 6 doublings, but slightly less than 7 doublings).\n\nWe've also seen that any function $f$ whose output grows by a constant (that depends on $y$) every time its input grows by a factor of $y$ is [4bz very likely a logarithm function], and that, in essence, [-4gm] function.\n\nWe've glanced at the [4gp underlying structure] that all logarithm functions tap into, and we've briefly discussed [4h0 what makes working with logarithms so dang useful].\n\nThere are also a huge number of questions about, applications for, and extensions of the logarithm that we _didn't_ explore. Those include, but are not limited to:\n\n- Why is $e$ the natural base of the logarithm?\n- What is up with the link between logarithms, exponentials, and roots?\n- What is the derivative of $\\log_b(x)$ and why is it proportional to $\\frac{1}{x}$?\n- How can logarithms be efficiently calculated?\n- What happens when we extend logarithms to complex numbers, and why is the result a [-multifunction]?\n\nAnswering these questions will require an advanced tutorial on logarithms. Such a thing does not exist yet, but you can help make it happen.\n',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'NateSoares',
    'AlexeiAndreev'
  ],
  childIds: [],
  parentIds: [
    'logarithm'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'b_class_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19655',
      pageId: 'log_tutorial_end',
      userId: 'AlexeiAndreev',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-09-21 01:27:16',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19653',
      pageId: 'log_tutorial_end',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-09-21 01:27:11',
      auxPageId: 'work_in_progress_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19654',
      pageId: 'log_tutorial_end',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-09-21 01:27:11',
      auxPageId: 'b_class_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19614',
      pageId: 'log_tutorial_end',
      userId: 'NateSoares',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-09-15 01:45:52',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13808',
      pageId: 'log_tutorial_end',
      userId: 'NateSoares',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-18 04:51:09',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13452',
      pageId: 'log_tutorial_end',
      userId: 'NateSoares',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-17 07:05:44',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13449',
      pageId: 'log_tutorial_end',
      userId: 'NateSoares',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-06-17 07:05:42',
      auxPageId: 'logarithm',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13448',
      pageId: 'log_tutorial_end',
      userId: 'NateSoares',
      edit: '1',
      type: 'newTag',
      createdAt: '2016-06-17 07:05:41',
      auxPageId: 'work_in_progress_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}