{ localUrl: '../page/log_tutorial_end.html', arbitalUrl: 'https://arbital.com/p/log_tutorial_end', rawJsonUrl: '../raw/4h2.json', likeableId: '2745', likeableType: 'page', myLikeValue: '0', likeCount: '5', dislikeCount: '0', likeScore: '5', individualLikes: [ 'EricBruylant', 'NateSoares', 'EricRogstad', 'SzymonSlawinski', 'JimmySantillan' ], pageId: 'log_tutorial_end', edit: '5', editSummary: '', prevEdit: '4', currentEdit: '5', wasPublished: 'true', type: 'wiki', title: 'The End (of the basic log tutorial)', clickbait: '', textLength: '2070', alias: 'log_tutorial_end', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'AlexeiAndreev', editCreatedAt: '2016-09-21 01:27:16', pageCreatorId: 'NateSoares', pageCreatedAt: '2016-06-17 07:05:44', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '185', text: 'That concludes our introductory tutorial on logarithms! You have made it to the end.\n\nThroughout this tutorial, we saw that the logarithm base $b$ of $x$ calculates the number of $b$-factors in $x.$ Hopefully, this claim now means more to you than it once did. We've seen a number of different ways of interpreting what logarithms are doing, including:\n\n- $\\log_b(x) = y$ means [416 "it takes about $y$ digits to write $x$ in base $b$."]\n- $\\log_b(x) = y$ means [44l "it takes about $y$ $b$-digits to emulate an $x$-digit."]\n- $\\log_b(x) = y$ means [45q "if the space of possible messages to send goes up by a factor of $x$, then the cost, in $b$-digits, goes up by a factor of $y$]\n- And, simply, $\\log_b(x) = y$ means that if you start with 1 and grow it by factors of $b$, then after $y$ iterations of this your result will be $x.$\n\nFor example, $\\log_2(100)$ counts the number of doublings that constitute a factor-of-100 increase. (The answer is more than 6 doublings, but slightly less than 7 doublings).\n\nWe've also seen that any function $f$ whose output grows by a constant (that depends on $y$) every time its input grows by a factor of $y$ is [4bz very likely a logarithm function], and that, in essence, [-4gm] function.\n\nWe've glanced at the [4gp underlying structure] that all logarithm functions tap into, and we've briefly discussed [4h0 what makes working with logarithms so dang useful].\n\nThere are also a huge number of questions about, applications for, and extensions of the logarithm that we _didn't_ explore. Those include, but are not limited to:\n\n- Why is $e$ the natural base of the logarithm?\n- What is up with the link between logarithms, exponentials, and roots?\n- What is the derivative of $\\log_b(x)$ and why is it proportional to $\\frac{1}{x}$?\n- How can logarithms be efficiently calculated?\n- What happens when we extend logarithms to complex numbers, and why is the result a [-multifunction]?\n\nAnswering these questions will require an advanced tutorial on logarithms. Such a thing does not exist yet, but you can help make it happen.\n', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'NateSoares', 'AlexeiAndreev' ], childIds: [], parentIds: [ 'logarithm' ], commentIds: [], questionIds: [], tagIds: [ 'b_class_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19655', pageId: 'log_tutorial_end', userId: 'AlexeiAndreev', edit: '5', type: 'newEdit', createdAt: '2016-09-21 01:27:16', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19653', pageId: 'log_tutorial_end', userId: 'AlexeiAndreev', edit: '0', type: 'deleteTag', createdAt: '2016-09-21 01:27:11', auxPageId: 'work_in_progress_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19654', pageId: 'log_tutorial_end', userId: 'AlexeiAndreev', edit: '0', type: 'newTag', createdAt: '2016-09-21 01:27:11', auxPageId: 'b_class_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19614', pageId: 'log_tutorial_end', userId: 'NateSoares', edit: '4', type: 'newEdit', createdAt: '2016-09-15 01:45:52', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13808', pageId: 'log_tutorial_end', userId: 'NateSoares', edit: '2', type: 'newEdit', createdAt: '2016-06-18 04:51:09', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13452', pageId: 'log_tutorial_end', userId: 'NateSoares', edit: '1', type: 'newEdit', createdAt: '2016-06-17 07:05:44', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13449', pageId: 'log_tutorial_end', userId: 'NateSoares', edit: '1', type: 'newParent', createdAt: '2016-06-17 07:05:42', auxPageId: 'logarithm', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13448', pageId: 'log_tutorial_end', userId: 'NateSoares', edit: '1', type: 'newTag', createdAt: '2016-06-17 07:05:41', auxPageId: 'work_in_progress_meta_tag', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }