{
  localUrl: '../page/n_digit.html',
  arbitalUrl: 'https://arbital.com/p/n_digit',
  rawJsonUrl: '../raw/4sj.json',
  likeableId: '2844',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '3',
  dislikeCount: '0',
  likeScore: '3',
  individualLikes: [
    'JaimeSevillaMolina',
    'EricRogstad',
    'SzymonWilczyski'
  ],
  pageId: 'n_digit',
  edit: '1',
  editSummary: '',
  prevEdit: '0',
  currentEdit: '1',
  wasPublished: 'true',
  type: 'wiki',
  title: 'n-digit',
  clickbait: '',
  textLength: '1474',
  alias: 'n_digit',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'NateSoares',
  editCreatedAt: '2016-06-24 04:58:44',
  pageCreatorId: 'NateSoares',
  pageCreatedAt: '2016-06-24 04:58:44',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '28',
  text: 'An $n$-digit is a physical object that can be stably placed into any of $n$ distinguishable states. For example, a coin (which can be placed heads or tails) and a single bit of memory on a computer (which either has a high volt level or a low volt level) are both examples of 2-digits. A [-42d] is an example of a 10-digit. One die is an example of a 6-digit; two dice together are an example of a 36-digit (because they can be placed in 36 different ways).\n\nWhat does and doesn't count as an $n$-digit depends on context and convention: For example, if you want to communicate a message to me by placing a penny heads-side up and choosing whether to point Abraham Lincoln's face either north, south, east, or west, then, for the purposes of the two of us, that penny is a 4-digit rather than a 2-digit. The definition of "stably placed" is also a bit up-for-grabs: If you're writing a computer program and need to store a [3v9 256-message] in short-term memory, then a byte of RAM will do, but if you need to store the same 256-message for a long period of time, you may need to use a less temporary 256-digit (such as a hard drive).\n\nNote that it's possible to emulate $m$-digits using $n$-digits, in general. If $m < n$ then an $n$-digit is trivially an $m$-digit (i.e., you can use a digit wheel like a 7-digit in a pinch), and if $m > n$ then, given enough $n$-digits, you can make do. For example, 3 coins can be used to encode an 8-digit. See also [emulating_digits].',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'NateSoares'
  ],
  childIds: [],
  parentIds: [
    'math'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'nonstandard_terminology_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14554',
      pageId: 'n_digit',
      userId: 'NateSoares',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-06-24 04:58:45',
      auxPageId: 'nonstandard_terminology_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14556',
      pageId: 'n_digit',
      userId: 'NateSoares',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-06-24 04:58:45',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14553',
      pageId: 'n_digit',
      userId: 'NateSoares',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-24 04:58:44',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}