{ localUrl: '../page/odds_refresher.html', arbitalUrl: 'https://arbital.com/p/odds_refresher', rawJsonUrl: '../raw/562.json', likeableId: '2983', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'NateSoares' ], pageId: 'odds_refresher', edit: '6', editSummary: '', prevEdit: '5', currentEdit: '6', wasPublished: 'true', type: 'wiki', title: 'Odds: Refresher', clickbait: 'A quick review of the notations and mathematical behaviors for odds (e.g. odds of 1 : 2 for drawing a red ball vs. green ball from a barrel).', textLength: '1579', alias: 'odds_refresher', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'EliezerYudkowsky', editCreatedAt: '2016-10-13 00:38:46', pageCreatorId: 'NateSoares', pageCreatedAt: '2016-07-06 22:47:56', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '178', text: 'Let's say that, in a certain forest, there are 2 sick trees for every 3 healthy trees. We can then say that the odds of a tree being sick (as opposed to healthy) are $(2 : 3).$\n\nOdds express *relative* chances. Saying "There's 2 sick trees for every 3 healthy trees" is the same as saying "There's 10 sick trees for every 15 healthy trees." If the original odds are $(x : y)$ we can multiply by a positive number $\\alpha$ and get a set of equivalent odds $(\\alpha x : \\alpha y).$ \n\nIf there's 2 sick trees for every 3 healthy trees, and every tree is either sick or healthy, then the *probability* of randomly picking a sick tree from among *all* trees is 2/(2+3):\n\n![Odds v probabilities](https://i.imgur.com/GVZnz2c.png?0)\n\nIf the set of possibilities $A, B, C$ are [1rd mutually exclusive and exhaustive], then the probabilities $\\mathbb P(A) + \\mathbb P(B) + \\mathbb P(C)$ should sum to $1.$ If there's no further possibilities $d,$ we can convert the relative odds $(a : b : c)$ into the probabilities $(\\frac{a}{a + b + c} : \\frac{b}{a + b + c} : \\frac{c}{a + b + c}).$ The process of dividing each term by the sum of terms, to turn a set of proportional odds into probabilities that sum to 1, is called [1rk normalization].\n\nWhen there are only two terms $x$ and $y$ in the odds, they can be expressed as a single ratio $\\frac{x}{y}.$ An odds ratio of $\\frac{x}{y}$ refers to odds of $(x : y),$ or, equivalently, odds of $\\left(\\frac{x}{y} : 1\\right).$ Odds of $(x : y)$ are sometimes called odds ratios, where it is understood that the actual ratio is $\\frac{x}{y}.$', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: [ '0', '0', '0', '0', '0', '0', '0', '0', '0', '0' ], muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: { Summary: 'Let's say that, in a certain forest, there are 2 sick trees for every 3 healthy trees. We can then say that the odds of a tree being sick (as opposed to healthy) are $(2 : 3).$' }, creatorIds: [ 'NateSoares', 'EliezerYudkowsky' ], childIds: [], parentIds: [ 'odds' ], commentIds: [], questionIds: [], tagIds: [ 'start_meta_tag', 'high_speed_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [ { id: '5758', parentId: 'odds', childId: 'odds_refresher', type: 'requirement', creatorId: 'AlexeiAndreev', createdAt: '2016-08-01 23:14:07', level: '2', isStrong: 'true', everPublished: 'true' }, { id: '5759', parentId: 'math1', childId: 'odds_refresher', type: 'requirement', creatorId: 'AlexeiAndreev', createdAt: '2016-08-01 23:15:27', level: '2', isStrong: 'true', everPublished: 'true' } ], subjects: [ { id: '5063', parentId: 'odds', childId: 'odds_refresher', type: 'subject', creatorId: 'NateSoares', createdAt: '2016-07-08 15:36:26', level: '2', isStrong: 'true', everPublished: 'true' } ], lenses: [], lensParentId: 'odds', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: { '1rb': [ '1rq', '1x3', '1x4', '1x8', '1zm', '21c' ] }, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20130', pageId: 'odds_refresher', userId: 'EliezerYudkowsky', edit: '6', type: 'newEdit', createdAt: '2016-10-13 00:38:46', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20129', pageId: 'odds_refresher', userId: 'EliezerYudkowsky', edit: '5', type: 'newEdit', createdAt: '2016-10-13 00:38:07', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20101', pageId: 'odds_refresher', userId: 'AlexeiAndreev', edit: '0', type: 'newTag', createdAt: '2016-10-11 19:14:23', auxPageId: 'high_speed_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17938', pageId: 'odds_refresher', userId: 'AlexeiAndreev', edit: '0', type: 'newRequirement', createdAt: '2016-08-01 23:15:27', auxPageId: 'math1', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17937', pageId: 'odds_refresher', userId: 'AlexeiAndreev', edit: '0', type: 'newRequirement', createdAt: '2016-08-01 23:14:07', auxPageId: 'odds', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17926', pageId: 'odds_refresher', userId: 'AlexeiAndreev', edit: '0', type: 'newTag', createdAt: '2016-08-01 22:44:55', auxPageId: 'start_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16188', pageId: 'odds_refresher', userId: 'NateSoares', edit: '0', type: 'newSubject', createdAt: '2016-07-08 15:36:27', auxPageId: 'odds', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15923', pageId: 'odds_refresher', userId: 'NateSoares', edit: '3', type: 'newEdit', createdAt: '2016-07-07 05:01:47', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15919', pageId: 'odds_refresher', userId: 'NateSoares', edit: '2', type: 'newEdit', createdAt: '2016-07-07 04:54:54', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15918', pageId: 'odds_refresher', userId: 'NateSoares', edit: '0', type: 'newAlias', createdAt: '2016-07-07 04:54:53', auxPageId: '', oldSettingsValue: 'odds_ratio_refresher', newSettingsValue: 'odds_refresher' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15837', pageId: 'odds_refresher', userId: 'NateSoares', edit: '0', type: 'newParent', createdAt: '2016-07-06 22:48:07', auxPageId: 'odds', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15835', pageId: 'odds_refresher', userId: 'NateSoares', edit: '1', type: 'newEdit', createdAt: '2016-07-06 22:47:56', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }