{
  localUrl: '../page/odds_refresher.html',
  arbitalUrl: 'https://arbital.com/p/odds_refresher',
  rawJsonUrl: '../raw/562.json',
  likeableId: '2983',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'NateSoares'
  ],
  pageId: 'odds_refresher',
  edit: '6',
  editSummary: '',
  prevEdit: '5',
  currentEdit: '6',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Odds: Refresher',
  clickbait: 'A quick review of the notations and mathematical behaviors for odds (e.g. odds of 1 : 2 for drawing a red ball vs. green ball from a barrel).',
  textLength: '1579',
  alias: 'odds_refresher',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'EliezerYudkowsky',
  editCreatedAt: '2016-10-13 00:38:46',
  pageCreatorId: 'NateSoares',
  pageCreatedAt: '2016-07-06 22:47:56',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '178',
  text: 'Let's say that, in a certain forest, there are 2 sick trees for every 3 healthy trees. We can then say that the odds of a tree being sick (as opposed to healthy) are $(2 : 3).$\n\nOdds express *relative* chances.  Saying "There's 2 sick trees for every 3 healthy trees" is the same as saying "There's 10 sick trees for every 15 healthy trees."  If the original odds are $(x : y)$ we can multiply by a positive number $\\alpha$ and get a set of equivalent odds $(\\alpha x : \\alpha y).$ \n\nIf there's 2 sick trees for every 3 healthy trees, and every tree is either sick or healthy, then the *probability* of randomly picking a sick tree from among *all* trees is 2/(2+3):\n\n![Odds v probabilities](https://i.imgur.com/GVZnz2c.png?0)\n\nIf the set of possibilities $A, B, C$ are [1rd mutually exclusive and exhaustive], then the probabilities $\\mathbb P(A) + \\mathbb P(B) + \\mathbb P(C)$ should sum to $1.$  If there's no further possibilities $d,$ we can convert the relative odds $(a : b : c)$ into the probabilities $(\\frac{a}{a + b + c} : \\frac{b}{a + b + c} : \\frac{c}{a + b + c}).$  The process of dividing each term by the sum of terms, to turn a set of proportional odds into probabilities that sum to 1, is called [1rk normalization].\n\nWhen there are only two terms $x$ and $y$ in the odds, they can be expressed as a single ratio $\\frac{x}{y}.$  An odds ratio of $\\frac{x}{y}$ refers to odds of $(x : y),$ or, equivalently, odds of $\\left(\\frac{x}{y} : 1\\right).$ Odds of $(x : y)$ are sometimes called odds ratios, where it is understood that the actual ratio is $\\frac{x}{y}.$',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: [
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0'
  ],
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {
    Summary: 'Let's say that, in a certain forest, there are 2 sick trees for every 3 healthy trees. We can then say that the odds of a tree being sick (as opposed to healthy) are $(2 : 3).$'
  },
  creatorIds: [
    'NateSoares',
    'EliezerYudkowsky'
  ],
  childIds: [],
  parentIds: [
    'odds'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'start_meta_tag',
    'high_speed_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '5758',
      parentId: 'odds',
      childId: 'odds_refresher',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-08-01 23:14:07',
      level: '2',
      isStrong: 'true',
      everPublished: 'true'
    },
    {
      id: '5759',
      parentId: 'math1',
      childId: 'odds_refresher',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-08-01 23:15:27',
      level: '2',
      isStrong: 'true',
      everPublished: 'true'
    }
  ],
  subjects: [
    {
      id: '5063',
      parentId: 'odds',
      childId: 'odds_refresher',
      type: 'subject',
      creatorId: 'NateSoares',
      createdAt: '2016-07-08 15:36:26',
      level: '2',
      isStrong: 'true',
      everPublished: 'true'
    }
  ],
  lenses: [],
  lensParentId: 'odds',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {
    '1rb': [
      '1rq',
      '1x3',
      '1x4',
      '1x8',
      '1zm',
      '21c'
    ]
  },
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20130',
      pageId: 'odds_refresher',
      userId: 'EliezerYudkowsky',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-10-13 00:38:46',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20129',
      pageId: 'odds_refresher',
      userId: 'EliezerYudkowsky',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-10-13 00:38:07',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20101',
      pageId: 'odds_refresher',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-10-11 19:14:23',
      auxPageId: 'high_speed_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17938',
      pageId: 'odds_refresher',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-08-01 23:15:27',
      auxPageId: 'math1',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17937',
      pageId: 'odds_refresher',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-08-01 23:14:07',
      auxPageId: 'odds',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17926',
      pageId: 'odds_refresher',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-01 22:44:55',
      auxPageId: 'start_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16188',
      pageId: 'odds_refresher',
      userId: 'NateSoares',
      edit: '0',
      type: 'newSubject',
      createdAt: '2016-07-08 15:36:27',
      auxPageId: 'odds',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15923',
      pageId: 'odds_refresher',
      userId: 'NateSoares',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-07-07 05:01:47',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15919',
      pageId: 'odds_refresher',
      userId: 'NateSoares',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-07-07 04:54:54',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15918',
      pageId: 'odds_refresher',
      userId: 'NateSoares',
      edit: '0',
      type: 'newAlias',
      createdAt: '2016-07-07 04:54:53',
      auxPageId: '',
      oldSettingsValue: 'odds_ratio_refresher',
      newSettingsValue: 'odds_refresher'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15837',
      pageId: 'odds_refresher',
      userId: 'NateSoares',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-06 22:48:07',
      auxPageId: 'odds',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15835',
      pageId: 'odds_refresher',
      userId: 'NateSoares',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-06 22:47:56',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}