{
  localUrl: '../page/orbit_stabiliser_theorem.html',
  arbitalUrl: 'https://arbital.com/p/orbit_stabiliser_theorem',
  rawJsonUrl: '../raw/4l8.json',
  likeableId: '2921',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'orbit_stabiliser_theorem',
  edit: '9',
  editSummary: '',
  prevEdit: '8',
  currentEdit: '9',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Orbit-stabiliser theorem',
  clickbait: 'The Orbit-Stabiliser theorem tells us a lot about how a group acts on a given element.',
  textLength: '2981',
  alias: 'orbit_stabiliser_theorem',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'MarkChimes',
  editCreatedAt: '2016-07-01 04:46:57',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-19 17:29:07',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '68',
  text: '[summary: \nA [-3t9 group action] of a group $G$ acting on a set $X$ describes how $G$ sends elements of $X$ to other elements of $X$.  Given a specific element $x \\in X$, the [-4mz stabiliser] is all those elements of the group which send $x$ back to itself, and the [-4v8 orbit] of $x$ is all the elements to which $x$ can get sent.  \n\nThis theorem tells you that $G$ is divided into equal-sized pieces using $x$. Each piece "looks like" the stabilizer of $x$ (and is the same size), and the orbit of $x$ tells you how to "move the piece around" over $G$ in order to cover it.  \n\nPut another way, each element $y$ in the orbit of $x$ is transformed "in the same way" by $G$ relative to $y$.  \n\nThis theorem is closely related to [-4jn Lagrange's Theorem]. \n]\n\n[summary(Technical): Let $G$ be a finite [-3gd], [3t9 acting] on a set $X$. Let $x \\in X$.\nWriting $\\mathrm{Stab}_G(x)$ for the [4mz stabiliser] of $x$, and $\\mathrm{Orb}_G(x)$ for the [4v8 orbit] of $x$, we have $$|G| = |\\mathrm{Stab}_G(x)| \\times |\\mathrm{Orb}_G(x)|$$ where $| \\cdot |$ refers to the size of a set.]\n\nLet $G$ be a finite [-3gd], [3t9 acting] on a set $X$. Let $x \\in X$.\nWriting $\\mathrm{Stab}_G(x)$ for the [4mz stabiliser] of $x$, and $\\mathrm{Orb}_G(x)$ for the [4v8 orbit] of $x$, we have $$|G| = |\\mathrm{Stab}_G(x)| \\times |\\mathrm{Orb}_G(x)|$$ where $| \\cdot |$ refers to the size of a set.\n\nThis statement generalises to infinite groups, where the same proof goes through to show that there is a [499 bijection] between the [4j4 left cosets] of the group $\\mathrm{Stab}_G(x)$ and the orbit $\\mathrm{Orb}_G(x)$.\n\n# Proof\n\nRecall that the [-4lt] of the parent group.\n\nFirstly, it is enough to show that there is a bijection between the left cosets of the stabiliser, and the orbit.\nIndeed, then $$|\\mathrm{Orb}_G(x)| |\\mathrm{Stab}_G(x)| = |\\{ \\text{left cosets of} \\ \\mathrm{Stab}_G(x) \\}| |\\mathrm{Stab}_G(x)|$$\nbut the right-hand side is simply $|G|$ because an element of $G$ is specified exactly by specifying an element of the stabiliser and a coset.\n(This follows because the [4j5 cosets partition the group].)\n\n## Finding the bijection\n\nDefine $\\theta: \\mathrm{Orb}_G(x) \\to \\{ \\text{left cosets of} \\ \\mathrm{Stab}_G(x) \\}$, by $$g(x) \\mapsto g \\mathrm{Stab}_G(x)$$\n\nThis map is well-defined: note that any element of $\\mathrm{Orb}_G(x)$ is given by $g(x)$ for some $g \\in G$, so we need to show that if $g(x) = h(x)$, then $g \\mathrm{Stab}_G(x) = h \\mathrm{Stab}_G(x)$.\nThis follows: $h^{-1}g(x) = x$ so $h^{-1}g \\in \\mathrm{Stab}_G(x)$.\n\nThe map is [4b7 injective]: if $g \\mathrm{Stab}_G(x) = h \\mathrm{Stab}_G(x)$ then we need $g(x)=h(x)$.\nBut this is true: $h^{-1} g \\in \\mathrm{Stab}_G(x)$ and so $h^{-1}g(x) = x$, from which $g(x) = h(x)$.\n\nThe map is [4bg surjective]: let $g \\mathrm{Stab}_G(x)$ be a left coset.\nThen $g(x) \\in \\mathrm{Orb}_G(x)$ by definition of the orbit, so $g(x)$ gets taken to $g \\mathrm{Stab}_G(x)$ as required.\n\nHence $\\theta$ is a well-defined bijection.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens',
    'MarkChimes',
    'AlexeiAndreev'
  ],
  childIds: [
    'orbit_stabiliser_theorem_external_resources'
  ],
  parentIds: [
    'group_action'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '4277',
      parentId: 'group_action',
      childId: 'orbit_stabiliser_theorem',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-19 17:18:00',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '4278',
      parentId: 'bijective_function',
      childId: 'orbit_stabiliser_theorem',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-19 17:28:28',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '4304',
      parentId: 'stabiliser_is_a_subgroup',
      childId: 'orbit_stabiliser_theorem',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-20 08:56:27',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [
    {
      id: '58',
      pageId: 'orbit_stabiliser_theorem',
      lensId: 'orbit_stabiliser_theorem_external_resources',
      lensIndex: '0',
      lensName: 'External resources',
      lensSubtitle: '',
      createdBy: '4c1',
      createdAt: '2016-07-01 04:49:55',
      updatedBy: '1yq',
      updatedAt: '2016-07-03 00:00:18'
    }
  ],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15036',
      pageId: 'orbit_stabiliser_theorem',
      userId: 'MarkChimes',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-01 04:49:46',
      auxPageId: 'orbit_stabiliser_theorem_external_resources',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15034',
      pageId: 'orbit_stabiliser_theorem',
      userId: 'MarkChimes',
      edit: '9',
      type: 'newEdit',
      createdAt: '2016-07-01 04:46:57',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15033',
      pageId: 'orbit_stabiliser_theorem',
      userId: 'MarkChimes',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-07-01 04:46:02',
      auxPageId: 'needs_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15031',
      pageId: 'orbit_stabiliser_theorem',
      userId: 'MarkChimes',
      edit: '8',
      type: 'newEdit',
      createdAt: '2016-07-01 04:45:01',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'Fixed some spacing in summary'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14729',
      pageId: 'orbit_stabiliser_theorem',
      userId: 'AlexeiAndreev',
      edit: '7',
      type: 'newEdit',
      createdAt: '2016-06-28 22:55:44',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14726',
      pageId: 'orbit_stabiliser_theorem',
      userId: 'MarkChimes',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-06-28 22:04:43',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14684',
      pageId: 'orbit_stabiliser_theorem',
      userId: 'PatrickStevens',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-06-28 14:03:00',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14156',
      pageId: 'orbit_stabiliser_theorem',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-06-20 22:04:00',
      auxPageId: 'needs_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14090',
      pageId: 'orbit_stabiliser_theorem',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-06-20 08:56:31',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14089',
      pageId: 'orbit_stabiliser_theorem',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-06-20 08:56:28',
      auxPageId: 'stabiliser_is_a_subgroup',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14002',
      pageId: 'orbit_stabiliser_theorem',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-19 17:29:58',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13998',
      pageId: 'orbit_stabiliser_theorem',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-06-19 17:29:10',
      auxPageId: 'group_action',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13999',
      pageId: 'orbit_stabiliser_theorem',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-06-19 17:29:10',
      auxPageId: 'bijective_function',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13997',
      pageId: 'orbit_stabiliser_theorem',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-06-19 17:29:09',
      auxPageId: 'group_action',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13995',
      pageId: 'orbit_stabiliser_theorem',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-19 17:29:07',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'true',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}