{
  localUrl: '../page/pid_implies_prime_equals_irreducible.html',
  arbitalUrl: 'https://arbital.com/p/pid_implies_prime_equals_irreducible',
  rawJsonUrl: '../raw/5mf.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'pid_implies_prime_equals_irreducible',
  edit: '1',
  editSummary: '',
  prevEdit: '0',
  currentEdit: '1',
  wasPublished: 'true',
  type: 'wiki',
  title: 'In a principal ideal domain, "prime" and "irreducible" are the same',
  clickbait: 'Principal ideal domains have a very useful property that we don't need to distinguish between the informal notion of "prime" (i.e. "irreducible") and the formal notion.',
  textLength: '2598',
  alias: 'pid_implies_prime_equals_irreducible',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-07-28 14:03:01',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-07-28 14:03:01',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '1',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '20',
  text: '[summary: While there are two distinct but closely related notions of "[5m2 prime]" and "[5m1 irreducible]", the two ideas are actually the same in a certain class of [3gq ring]. This result is basically what enables the [-fundamental_theorem_of_arithmetic].]\n\nLet $R$ be a [3gq ring] which is a [principal_ideal_domain PID], and let $r \\not = 0$ be an element of $R$.\nThen $r$ is [5m1 irreducible] if and only if $r$ is [5m2 prime].\n\nIn fact, it is easier to prove a stronger statement: that the following are equivalent.\n%%note:Every proof known to the author is of this shape either implicitly or explicitly, but when it's explicit, it should be clearer what is going on.%%\n\n1. $r$ is irreducible. \n2. $r$ is prime.\n3. The generated [ideal_ring_theory ideal] $\\langle r \\rangle$ is [maximal_ideal maximal] in $R$.\n\n[todo: motivate the third bullet point]\n\n# Proof\n\n## $2 \\Rightarrow 1$\nA proof that "prime implies irreducible" appears on the page for [5m1 irreducibility].\n\n## $3 \\Rightarrow 2$\nWe wish to show that if $\\langle r \\rangle$ is maximal, then it is prime.\n(Indeed, $r$ is [5m2 prime] if and only if its generated ideal is [prime_ideal prime].)\n\nAn ideal $I$ is maximal if and only if the [quotient_ring quotient] $R/I$ is a [481 field]. ([ideal_maximal_iff_quotient_is_field Proof.])\n\nAn ideal $I$ is [prime_ideal prime] if and only if the quotient $R/I$ is an [-5md]. ([ideal_prime_iff_quotient_is_integral_domain Proof.])\n\nAll fields are integral domains. (A proof of this appears on [5md the page on integral domains].)\n\nHence maximal ideals are prime.\n\n## $1 \\Rightarrow 3$\nLet $r$ be irreducible; then in particular it is not invertible, so $\\langle r \\rangle$ isn't simply the whole ring.\n\nTo show that $\\langle r \\rangle$ is maximal, we need to show that if it is contained in any larger ideal then that ideal is the whole ring.\n\nSuppose $\\langle r \\rangle$ is contained in the larger ideal $J$, then.\nBecause we are in a principal ideal domain, $J = \\langle a \\rangle$, say, for some $a$, and so $r = a c$ for some $c$.\nIt will be enough to show that $a$ is invertible, because then $\\langle a \\rangle$ would be the entire ring.\n\nBut $r$ is irreducible, so one of $a$ and $c$ is invertible; if $a$ is invertible then we are done, so suppose $c$ is invertible.\n\nThen $a = r c^{-1}$.\nWe have supposed that $J$ is indeed larger than $\\langle r \\rangle$: that there is $j \\in J$ which is not in $\\langle r \\rangle$.\nSince $j \\in J = \\langle a \\rangle$, we can find $d$ (say) such that $j = a d$; so $j = r c^{-1} d$ and hence $j \\in \\langle r \\rangle$, which is a contradiction.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'algebraic_ring'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17640',
      pageId: 'pid_implies_prime_equals_irreducible',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-28 14:03:14',
      auxPageId: 'algebraic_ring',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17638',
      pageId: 'pid_implies_prime_equals_irreducible',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-28 14:03:01',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}