{ localUrl: '../page/poset_examples.html', arbitalUrl: 'https://arbital.com/p/poset_examples', rawJsonUrl: '../raw/43s.json', likeableId: '2620', likeableType: 'page', myLikeValue: '0', likeCount: '3', dislikeCount: '0', likeScore: '3', individualLikes: [ 'EricBruylant', 'VladArber', 'EricRogstad' ], pageId: 'poset_examples', edit: '17', editSummary: '', prevEdit: '16', currentEdit: '17', wasPublished: 'true', type: 'wiki', title: 'Poset: Examples', clickbait: '', textLength: '2638', alias: 'poset_examples', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'KevinClancy', editCreatedAt: '2016-12-06 21:34:09', pageCreatorId: 'KevinClancy', pageCreatedAt: '2016-06-08 22:29:11', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '60', text: 'The standard $\\leq$ relation on integers, the $\\subseteq$ relation on sets, and the $|$ (divisibility) relation on natural numbers are all examples of poset orders.\n\nInteger Comparison\n================\n\nThe set $\\mathbb Z$ of integers, ordered by the standard "less than or equal to" operator $\\leq$ forms a poset $\\langle \\mathbb Z, \\leq \\rangle$. This poset is somewhat boring however, because all pairs of elements are comparable; such posets are called chains or [540 totally ordered sets]. Here is its Hasse diagram.\n\n![Truncated Hasse diagram](http://i.imgur.com/STsyMfJ.png)\n%%%comment:\ndot source (doctored in GIMP)\n\ndigraph G {\n node [width = 0.1, height = 0.1]\n edge [arrowhead = "none"]\n a [label = "-3"]\n b [label = "-2"]\n c [label = "-1"]\n d [label = "0"]\n e [label = "1"]\n f [label = "2"]\n g [label = "3"]\n rankdir = BT;\n a -> b\n b -> c\n c -> d\n d -> e\n e -> f\n f -> g\n}\n%%%\nPower sets\n=========\n\nFor any set $X$, the power set of $X$ ordered by the set inclusion relation $\\subseteq$ forms a poset $\\langle \\mathcal{P}(X), \\subseteq \\rangle$. $\\subseteq$ is clearly [5dy reflexive], since any set is a subset of itself. For $A,B \\in \\mathcal{P}(X)$, $A \\subseteq B$ and $B \\subseteq A$ combine to give $x \\in A \\Leftrightarrow x \\in B$ which means $A = B$. Thus, $\\subseteq$ is [5lt antisymmetric]. Finally, for $A, B, C \\in \\mathcal{P}(X)$, $A \\subseteq B$ and $B \\subseteq C$ give $x \\in A \\Rightarrow x \\in B$ and $x \\in B \\Rightarrow x \\in C$, and so the [573 transitivity] of $\\subseteq$ follows from the transitivity of $\\Rightarrow$.\n\nNote that the strict subset relation $\\subset$ is the strict ordering derived from the poset $\\langle \\mathcal{P}(X), \\subseteq \\rangle$.\n\nDivisibility on the natural numbers\n===========================\n\nLet [45h $\\mathbb N$] be the set of natural numbers including zero, and let $|$ be the divides relation, where $a|b$ whenever there exists an integer $k$ such that $ak=b$. Then $\\langle \\mathbb{N}, | \\rangle$ is a poset. $|$ is reflexive because, letting k=1, any natural number divides itself. To see that $|$ is anti-symmetric, suppose $a|b$ and $b|a$. Then there exist integers $k_1$ and $k_2$ such that $a = k_1b$ and $b = k_2a$. By substitution, we have $a = k_1k_2a$. Thus, if either $k$ is $0$, then both $a$ and $b$ must be $0$. Otherwise, both $k$'s must equal $1$ so that $a = k_1k_2a$ holds. Either way, $a = b$, and so $|$ is anti-symmetric. To see that $|$ is transitive, suppose that $a|b$ and $b|c$. This implies the existence of integers $k_1$ and $k_2$ such that $a = k_1b$ and $b = k_2c$. Since by substitution $a = k_1k_2c$, we have $a|c$.\n', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '2', maintainerCount: '2', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: [ '0', '0', '0', '0', '0', '0', '0', '0', '0', '0' ], muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'KevinClancy', 'EricRogstad', 'JoeZeng' ], childIds: [], parentIds: [ 'poset' ], commentIds: [], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: 'poset', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20612', pageId: 'poset_examples', userId: 'KevinClancy', edit: '17', type: 'newEdit', createdAt: '2016-12-06 21:34:09', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20536', pageId: 'poset_examples', userId: 'KevinClancy', edit: '16', type: 'newEdit', createdAt: '2016-12-02 19:08:56', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15436', pageId: 'poset_examples', userId: 'JoeZeng', edit: '15', type: 'newEdit', createdAt: '2016-07-05 20:52:26', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15435', pageId: 'poset_examples', userId: 'JoeZeng', edit: '14', type: 'newEdit', createdAt: '2016-07-05 20:49:59', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13988', pageId: 'poset_examples', userId: 'KevinClancy', edit: '13', type: 'newEdit', createdAt: '2016-06-19 02:18:14', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13987', pageId: 'poset_examples', userId: 'KevinClancy', edit: '12', type: 'newEdit', createdAt: '2016-06-19 02:16:29', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13978', pageId: 'poset_examples', userId: 'KevinClancy', edit: '11', type: 'newEdit', createdAt: '2016-06-19 02:07:13', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13900', pageId: 'poset_examples', userId: 'KevinClancy', edit: '10', type: 'newEdit', createdAt: '2016-06-18 14:22:31', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13898', pageId: 'poset_examples', userId: 'KevinClancy', edit: '9', type: 'newEdit', createdAt: '2016-06-18 14:13:51', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12184', pageId: 'poset_examples', userId: 'KevinClancy', edit: '8', type: 'newEdit', createdAt: '2016-06-09 17:18:07', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12178', pageId: 'poset_examples', userId: 'KevinClancy', edit: '7', type: 'newEdit', createdAt: '2016-06-09 17:11:39', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12170', pageId: 'poset_examples', userId: 'KevinClancy', edit: '6', type: 'newEdit', createdAt: '2016-06-09 16:59:27', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12158', pageId: 'poset_examples', userId: 'EricRogstad', edit: '5', type: 'newEdit', createdAt: '2016-06-09 08:26:16', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12156', pageId: 'poset_examples', userId: 'EricRogstad', edit: '4', type: 'newEdit', createdAt: '2016-06-09 08:23:40', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12113', pageId: 'poset_examples', userId: 'KevinClancy', edit: '3', type: 'newEdit', createdAt: '2016-06-08 23:00:09', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12112', pageId: 'poset_examples', userId: 'KevinClancy', edit: '2', type: 'newEdit', createdAt: '2016-06-08 22:55:29', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12111', pageId: 'poset_examples', userId: 'KevinClancy', edit: '1', type: 'newEdit', createdAt: '2016-06-08 22:29:11', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12109', pageId: 'poset_examples', userId: 'KevinClancy', edit: '1', type: 'newParent', createdAt: '2016-06-08 22:28:52', auxPageId: 'poset', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }