{ localUrl: '../page/poset_lattice_examples.html', arbitalUrl: 'https://arbital.com/p/poset_lattice_examples', rawJsonUrl: '../raw/574.json', likeableId: '0', likeableType: 'page', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], pageId: 'poset_lattice_examples', edit: '9', editSummary: '', prevEdit: '8', currentEdit: '9', wasPublished: 'true', type: 'wiki', title: 'Lattice: Examples', clickbait: '', textLength: '3081', alias: 'poset_lattice_examples', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'KevinClancy', editCreatedAt: '2016-07-16 19:08:44', pageCreatorId: 'KevinClancy', pageCreatedAt: '2016-07-07 17:52:51', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '32', text: 'Here are some additional examples of lattices. $\\newcommand{\\nsubg}{\\mathcal N \\mbox{-} Sub~G}$\n\nA familiar example\n---------------------------------\n\nConsider the following lattice.\n\n![Suspicious Lattice Hasse Diagram](http://i.imgur.com/7HefDKm.png)\n\nDoes this lattice look at all familiar to you? From some other area of mathematics, perhaps?\n\n%%hidden(Reveal the truth):\n\nIn fact, this lattice corresponds to boolean logic, as can be seen when we replace b with true and a with false in the following "truth table".\n\n![lattice truth table](http://i.imgur.com/hpThsTk.png)\n\n%%comment:\n\nLatex source:\n\n\\begin{tabular} {| c | c | c | c |}\n \\hline\n $x$ & $y$ & $x \\vee y$ & $x \\wedge y$ \\\\ \\hline\n $a$ & $a$ & $a$ & $a$ \\\\ \\hline\n $a$ & $b$ & $b$ & $a$ \\\\ \\hline\n $b$ & $a$ & $b$ & $a$ \\\\ \\hline\n $b$ & $b$ & $b$ & $b$ \\\\ \\hline\n\\end{tabular}\n\n%%\n\n%%\n\n\nNormal subgroups\n---------------------------------\n\nLet $G$ be a group, and let $\\nsubg$ be the set of all [4h6 normal subgroups] of $G$. Then $\\langle \\nsubg, \\subseteq \\rangle$ is a lattice where for $H, K \\in \\nsubg$, $H \\wedge K = H \\cap K$, and $H \\vee K = HK = \\{ hk \\mid h \\in H, k \\in K \\}$.\n\n%%hidden(Proof):\n\nLet $H,K \\in \\nsubg$. Then $H \\wedge K = H \\cap K$. We first note that $H \\cap K$ is a [576 subgroup] of $G$. For let $a,b \\in H \\cap K$. Since $H$ is a group, $a \\in H$, and $b \\in H$, we have $ab \\in H$. Likewise, $ab \\in K$. Combining these, we have $ab \\in H \\cap K$, and so $H \\cap K$ is satisfies the closure requirement for subgroups. Since $H$ and $K$ are groups, $a \\in H$, and $a \\in K$, we have $a^{-1} \\in H$ and $a^{-1} \\in K$. Hence, $a^{-1} \\in H \\cap K$, and so $H \\cap K$ satisfies the inverses requirement for subgroups. Since $H$ and $K$ are subgroups of $G$, we have $e \\in H$ and $e \\in K$. Hence, we have $e \\in H \\cap K$, and so $H \\cap K$ satisfies the identity requirement for subgroups. \n\nFurthermore, $H \\cap K$ is a normal subgroup, because for all $a \\in G$, $a^{-1}(H \\cap K)a = a^{-1}Ha \\cap a^{-1}Ka = H \\cap K$. It's clear from the definition of intersection that $H$ and $K$ do not share a common subset larger than $H \\cap K$.\n \nFor $H, K \\in \\nsubg$, we have $H \\vee K = HK = \\{ hk \\mid h \\in H, k \\in K \\}$. \n\nFirst we will show that $HK$ is a group. For $hk, h'k' \\in HK$, since $kH = Hk$, there is some $h'' \\in H$ such that $kh' = h''k$. Hence, $hkh'k' = hh''kk' \\in HK$, and so $HK$ is closed under $G$'s group action. For $hk \\in HK$, we have $(hk)^{-1} = k^{-1}h^{-1} \\in k^{-1}H = Hk^{-1} \\subseteq HK$, and so $HK$ is closed under inversion. Since $e \\in H$ and $e \\in K$, we have $e = ee \\in HK$. Finally, $HK$ inherits its associativity from $G$.\n\nTo see that $HK$ is a normal subgroup of $G$, let $a \\in G$. Then $a^{-1}HKa = Ha^{-1}Ka = HKa^{-1}a = HK$.\n\nThere is no subgroup $F$ of $G$ smaller than $HK$ which contains both $H$ and $K$. If there were such a subgroup, there would exist some $h \\in H$ and some $k \\in K$ such that $hk \\not\\in F$. But $h \\in F$ and $k \\in F$, and so from $F$'s group closure we conclude $hk \\in F$, a contradiction.\n\n%%\n', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: [ '0', '0', '0', '0', '0', '0', '0', '0', '0', '0' ], muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'KevinClancy' ], childIds: [], parentIds: [ 'order_lattice' ], commentIds: [], questionIds: [], tagIds: [ 'example_problem' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [ { id: '4999', parentId: 'order_lattice', childId: 'poset_lattice_examples', type: 'requirement', creatorId: 'KevinClancy', createdAt: '2016-07-07 17:19:52', level: '1', isStrong: 'false', everPublished: 'true' } ], subjects: [], lenses: [], lensParentId: 'order_lattice', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16950', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '0', type: 'newTag', createdAt: '2016-07-16 20:54:22', auxPageId: 'example_problem', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16949', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '0', type: 'newParent', createdAt: '2016-07-16 20:54:09', auxPageId: 'order_lattice', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16947', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '0', type: 'deleteTag', createdAt: '2016-07-16 20:53:45', auxPageId: 'example_problem', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16945', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '0', type: 'newTag', createdAt: '2016-07-16 20:53:38', auxPageId: 'example_problem', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16904', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '9', type: 'newEdit', createdAt: '2016-07-16 19:08:44', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16897', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '0', type: 'deleteParent', createdAt: '2016-07-16 18:53:19', auxPageId: 'order_lattice', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16892', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '8', type: 'newEdit', createdAt: '2016-07-16 18:35:28', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16891', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '7', type: 'newEdit', createdAt: '2016-07-16 18:29:18', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16890', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '6', type: 'newEdit', createdAt: '2016-07-16 18:25:45', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16889', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '5', type: 'newEdit', createdAt: '2016-07-16 18:24:54', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16888', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '4', type: 'newEdit', createdAt: '2016-07-16 18:24:21', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3088', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '16887', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '3', type: 'newEdit', createdAt: '2016-07-16 18:19:01', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16034', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '2', type: 'newEdit', createdAt: '2016-07-07 18:10:30', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16033', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '0', type: 'newAlias', createdAt: '2016-07-07 18:02:10', auxPageId: '', oldSettingsValue: '574', newSettingsValue: 'poset_lattice_examples' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16026', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '0', type: 'newParent', createdAt: '2016-07-07 17:52:53', auxPageId: 'order_lattice', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16027', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '0', type: 'newRequirement', createdAt: '2016-07-07 17:52:53', auxPageId: 'order_lattice', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16024', pageId: 'poset_lattice_examples', userId: 'KevinClancy', edit: '1', type: 'newEdit', createdAt: '2016-07-07 17:52:51', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }