{ localUrl: '../page/posterior_probability.html', arbitalUrl: 'https://arbital.com/p/posterior_probability', rawJsonUrl: '../raw/1rp.json', likeableId: '707', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'EricBruylant' ], pageId: 'posterior_probability', edit: '11', editSummary: 'removed spurious comma', prevEdit: '10', currentEdit: '11', wasPublished: 'true', type: 'wiki', title: 'Posterior probability', clickbait: 'What we believe, after seeing the evidence and doing a Bayesian update.', textLength: '870', alias: 'posterior_probability', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'EricRogstad', editCreatedAt: '2016-07-10 07:08:40', pageCreatorId: 'EliezerYudkowsky', pageCreatedAt: '2016-01-27 05:32:22', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '227', text: '"Posterior [1rf probability]" or "posterior [1rb odds]" refers our state of belief *after* seeing a piece of new evidence and doing a [1ly Bayesian update]. Suppose there are two suspects in a murder, Colonel Mustard and Miss Scarlet. Before determining the victim's cause of death, perhaps you thought Mustard and Scarlet were equally likely to have committed the murder (50% and 50%). After determining that the victim was poisoned, you now think that Mustard and Scarlet are respectively 25% and 75% likely to have committed the murder. In this case, your "[1rm prior probability]" of Miss Scarlet committing the murder was 50%, and your "posterior probability" *after* seeing the evidence was 75%. The posterior probability of a hypothesis $H$ after seeing the evidence $e$ is often denoted using the [1rj conditional probability notation] $\\mathbb P(H\\mid e).$', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '2016-02-13 01:02:05', hasDraft: 'false', votes: [], voteSummary: [ '0', '0', '0', '0', '0', '0', '0', '0', '0', '0' ], muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: { Summary: '"Posterior [1rf probability]" or "posterior [1rb odds]" refers our state of belief *after* seeing a piece of new evidence and doing a [1ly Bayesian update]. Suppose there are two suspects in a murder, Colonel Mustard and Miss Scarlet. Before determining the victim's cause of death, perhaps you thought Mustard and Scarlet were equally likely to have committed the murder (50% and 50%). After determining that the victim was poisoned, you now think that Mustard and Scarlet are respectively 25% and 75% likely to have committed the murder. In this case, your "[1rm prior probability]" of Miss Scarlet committing the murder was 50%, and your "posterior probability" *after* seeing the evidence was 75%. The posterior probability of a hypothesis $H$ after seeing the evidence $e$ is often denoted using the [1rj conditional probability notation] $\\mathbb P(H\\mid e).$' }, creatorIds: [ 'EliezerYudkowsky', 'NateSoares', 'EricRogstad' ], childIds: [], parentIds: [ 'bayes_reasoning' ], commentIds: [], questionIds: [], tagIds: [ 'needs_summary_meta_tag', 'c_class_meta_tag' ], relatedIds: [], markIds: [], explanations: [ { id: '5859', parentId: 'posterior_probability', childId: 'posterior_probability', type: 'subject', creatorId: 'AlexeiAndreev', createdAt: '2016-08-02 17:33:40', level: '1', isStrong: 'true', everPublished: 'true' } ], learnMore: [], requirements: [ { id: '5860', parentId: 'conditional_probability', childId: 'posterior_probability', type: 'requirement', creatorId: 'AlexeiAndreev', createdAt: '2016-08-02 17:33:58', level: '2', isStrong: 'false', everPublished: 'true' } ], subjects: [ { id: '5859', parentId: 'posterior_probability', childId: 'posterior_probability', type: 'subject', creatorId: 'AlexeiAndreev', createdAt: '2016-08-02 17:33:40', level: '1', isStrong: 'true', everPublished: 'true' } ], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18350', pageId: 'posterior_probability', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-08-04 14:16:37', auxPageId: 'c_class_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18349', pageId: 'posterior_probability', userId: 'EricBruylant', edit: '0', type: 'deleteTag', createdAt: '2016-08-04 14:16:30', auxPageId: 'start_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18347', pageId: 'posterior_probability', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-08-04 14:15:39', auxPageId: 'start_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18185', pageId: 'posterior_probability', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-08-02 18:25:35', auxPageId: 'needs_summary_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18161', pageId: 'posterior_probability', userId: 'AlexeiAndreev', edit: '0', type: 'newRequirement', createdAt: '2016-08-02 17:33:58', auxPageId: 'conditional_probability', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18157', pageId: 'posterior_probability', userId: 'AlexeiAndreev', edit: '0', type: 'newTeacher', createdAt: '2016-08-02 17:33:40', auxPageId: 'posterior_probability', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18158', pageId: 'posterior_probability', userId: 'AlexeiAndreev', edit: '0', type: 'newSubject', createdAt: '2016-08-02 17:33:40', auxPageId: 'posterior_probability', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16350', pageId: 'posterior_probability', userId: 'EricRogstad', edit: '11', type: 'newEdit', createdAt: '2016-07-10 07:08:40', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'removed spurious comma' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16191', pageId: 'posterior_probability', userId: 'NateSoares', edit: '10', type: 'newEdit', createdAt: '2016-07-08 15:39:11', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16190', pageId: 'posterior_probability', userId: 'NateSoares', edit: '9', type: 'newEdit', createdAt: '2016-07-08 15:38:45', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5855', pageId: 'posterior_probability', userId: 'EliezerYudkowsky', edit: '8', type: 'newEdit', createdAt: '2016-01-27 06:59:17', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5843', pageId: 'posterior_probability', userId: 'AlexeiAndreev', edit: '6', type: 'newParent', createdAt: '2016-01-27 06:26:11', auxPageId: 'bayes_reasoning', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5841', pageId: 'posterior_probability', userId: 'AlexeiAndreev', edit: '0', type: 'deleteParent', createdAt: '2016-01-27 06:25:58', auxPageId: 'bayes_reasoning', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5835', pageId: 'posterior_probability', userId: 'EliezerYudkowsky', edit: '6', type: 'newEdit', createdAt: '2016-01-27 05:45:13', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5834', pageId: 'posterior_probability', userId: 'EliezerYudkowsky', edit: '5', type: 'newEdit', createdAt: '2016-01-27 05:45:02', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5833', pageId: 'posterior_probability', userId: 'EliezerYudkowsky', edit: '4', type: 'newEdit', createdAt: '2016-01-27 05:44:06', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5832', pageId: 'posterior_probability', userId: 'EliezerYudkowsky', edit: '3', type: 'newEdit', createdAt: '2016-01-27 05:41:07', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5831', pageId: 'posterior_probability', userId: 'EliezerYudkowsky', edit: '2', type: 'newEdit', createdAt: '2016-01-27 05:40:32', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5830', pageId: 'posterior_probability', userId: 'EliezerYudkowsky', edit: '1', type: 'newEdit', createdAt: '2016-01-27 05:32:23', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5829', pageId: 'posterior_probability', userId: 'EliezerYudkowsky', edit: '0', type: 'newParent', createdAt: '2016-01-27 05:27:53', auxPageId: 'bayes_reasoning', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }