{
localUrl: '../page/prime_element_ring_theory.html',
arbitalUrl: 'https://arbital.com/p/prime_element_ring_theory',
rawJsonUrl: '../raw/5m2.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: 'prime_element_ring_theory',
edit: '3',
editSummary: '',
prevEdit: '2',
currentEdit: '3',
wasPublished: 'true',
type: 'wiki',
title: 'Prime element of a ring',
clickbait: 'Despite the name, "prime" in ring theory refers not to elements which are "multiplicatively irreducible" but to those such that if they divide a product then they divide some term of the product.',
textLength: '1211',
alias: 'prime_element_ring_theory',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-08-21 07:33:25',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-07-27 20:21:56',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '25',
text: '[summary: A prime element of a [3gq ring] is one such that, if it divides a product, then it divides (at least) one of the terms of the product.]\n\n[summary(Technical): Let $(R, +, \\times)$ be a [3gq ring] which is an [5md integral domain]. We say $p \\in R$ is *prime* if, whenever $p \\mid ab$, it is the case that either $p \\mid a$ or $p \\mid b$ (or both).]\n\nAn element of an [-5md] is *prime* if it has the property that $p \\mid ab$ implies $p \\mid a$ or $p \\mid b$.\nEquivalently, if its generated [ideal_ring_theory ideal] is [prime_ideal prime] in the sense that $ab \\in \\langle p \\rangle$ implies either $a$ or $b$ is in $\\langle p \\rangle$.\n\nBe aware that "prime" in ring theory does not correspond exactly to "[4mf prime]" in number theory (the correct abstraction of which is [5m1 irreducibility]). \nIt is the case that they are the same concept in the ring $\\mathbb{Z}$ of [48l integers] ([5mf proof]), but this is a nontrivial property that turns out to be equivalent to the [-5rh] ([alternative_condition_for_ufd proof]).\n\n# Examples\n\n# Properties\n\n- Primes are always [5m1 irreducible]; a proof of this fact appears on the [5m1 page on irreducibility], along with counterexamples to the converse.\n- ',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens',
'EricBruylant'
],
childIds: [],
parentIds: [
'algebraic_ring'
],
commentIds: [],
questionIds: [],
tagIds: [
'stub_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19057',
pageId: 'prime_element_ring_theory',
userId: 'PatrickStevens',
edit: '3',
type: 'newEdit',
createdAt: '2016-08-21 07:33:25',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17925',
pageId: 'prime_element_ring_theory',
userId: 'EricBruylant',
edit: '2',
type: 'newEdit',
createdAt: '2016-08-01 22:12:38',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'linebreak to fix summaries'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17601',
pageId: 'prime_element_ring_theory',
userId: 'PatrickStevens',
edit: '0',
type: 'newParent',
createdAt: '2016-07-27 20:21:57',
auxPageId: 'algebraic_ring',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17602',
pageId: 'prime_element_ring_theory',
userId: 'PatrickStevens',
edit: '0',
type: 'newTag',
createdAt: '2016-07-27 20:21:57',
auxPageId: 'stub_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17599',
pageId: 'prime_element_ring_theory',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-27 20:21:56',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}