{
  localUrl: '../page/prime_element_ring_theory.html',
  arbitalUrl: 'https://arbital.com/p/prime_element_ring_theory',
  rawJsonUrl: '../raw/5m2.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'prime_element_ring_theory',
  edit: '3',
  editSummary: '',
  prevEdit: '2',
  currentEdit: '3',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Prime element of a ring',
  clickbait: 'Despite the name, "prime" in ring theory refers not to elements which are "multiplicatively irreducible" but to those such that if they divide a product then they divide some term of the product.',
  textLength: '1211',
  alias: 'prime_element_ring_theory',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-08-21 07:33:25',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-07-27 20:21:56',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '25',
  text: '[summary:  A prime element of a [3gq ring] is one such that, if it divides a product, then it divides (at least) one of the terms of the product.]\n\n[summary(Technical): Let $(R, +, \\times)$ be a [3gq ring] which is an [5md integral domain]. We say $p \\in R$ is *prime* if, whenever $p \\mid ab$, it is the case that either $p \\mid a$ or $p \\mid b$ (or both).]\n\nAn element of an [-5md] is *prime* if it has the property that $p \\mid ab$ implies $p \\mid a$ or $p \\mid b$.\nEquivalently, if its generated [ideal_ring_theory ideal] is [prime_ideal prime] in the sense that $ab \\in \\langle p \\rangle$ implies either $a$ or $b$ is in $\\langle p \\rangle$.\n\nBe aware that "prime" in ring theory does not correspond exactly to "[4mf prime]" in number theory (the correct abstraction of which is [5m1 irreducibility]). \nIt is the case that they are the same concept in the ring $\\mathbb{Z}$ of [48l integers] ([5mf proof]), but this is a nontrivial property that turns out to be equivalent to the [-5rh] ([alternative_condition_for_ufd proof]).\n\n# Examples\n\n# Properties\n\n- Primes are always [5m1 irreducible]; a proof of this fact appears on the [5m1 page on irreducibility], along with counterexamples to the converse.\n- ',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens',
    'EricBruylant'
  ],
  childIds: [],
  parentIds: [
    'algebraic_ring'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'stub_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19057',
      pageId: 'prime_element_ring_theory',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-08-21 07:33:25',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17925',
      pageId: 'prime_element_ring_theory',
      userId: 'EricBruylant',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-08-01 22:12:38',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'linebreak to fix summaries'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17601',
      pageId: 'prime_element_ring_theory',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-27 20:21:57',
      auxPageId: 'algebraic_ring',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17602',
      pageId: 'prime_element_ring_theory',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-27 20:21:57',
      auxPageId: 'stub_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17599',
      pageId: 'prime_element_ring_theory',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-27 20:21:56',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}