{
  localUrl: '../page/principal_ideal_domain.html',
  arbitalUrl: 'https://arbital.com/p/principal_ideal_domain',
  rawJsonUrl: '../raw/5r5.json',
  likeableId: '3333',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'principal_ideal_domain',
  edit: '4',
  editSummary: 'removed empty hidden thing, best avoid dashing hopes of a proof',
  prevEdit: '3',
  currentEdit: '4',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Principal ideal domain',
  clickbait: 'A principal ideal domain is a kind of ring, in which all ideals have a certain nice form.',
  textLength: '2654',
  alias: 'principal_ideal_domain',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'EricBruylant',
  editCreatedAt: '2016-08-04 16:10:18',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-08-03 16:31:07',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '1',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '38',
  text: '[summary: A principal ideal domain is an [-5md] in which every [ideal_ring_theory ideal] has a single generator.]\n\nIn [3gq ring theory], an [-5md] is a **principal ideal domain** (or **PID**) if every [ideal_ring_theory ideal] can be generated by a single element.\nThat is, for every ideal $I$ there is an element $i \\in I$ such that $\\langle i \\rangle = I$; equivalently, every element of $I$ is a multiple of $i$.\n\nSince ideals are [5r6 kernels] of [ring_homomorphism ring homomorphisms] ([5r9 proof]), this is saying that a PID $R$ has the special property that *every* ring homomorphism from $R$ acts "nearly non-trivially", in that the collection of things it sends to the identity is just "one particular element, and everything that is forced by that, but nothing else".\n\n# Examples\n\n- Every [euclidean_domain Euclidean domain] is a PID. ([euclidean_domain_is_pid Proof.])\n- Therefore $\\mathbb{Z}$ is a PID, because it is a [euclidean_domain Euclidean domain]. (Its Euclidean function is "take the modulus".)\n- Every [481 field] is a PID because every ideal is either the singleton $\\{ 0 \\}$ (i.e. generated by $0$) or else is the entire ring (i.e. generated by $1$).\n- The [polynomial_ring ring $F[X]$ of polynomials] over a field $F$ is a PID, because it is a Euclidean domain. (Its Euclidean function is "take the [polynomial_degree degree] of the polynomial".)\n- The ring of [gaussian_integer Gaussian integers], $\\mathbb{Z}[i]$, is a PID because it is a Euclidean domain. ([gaussian_integers_is_pid Proof]; its Euclidean function is "take the [norm_complex_number norm]".)\n- The ring $\\mathbb{Z}[X]$ (of integer-coefficient polynomials) is *not* a PID, because the ideal $\\langle 2, X \\rangle$ is not principal. This is an example of a [-unique_factorisation_domain] which is not a PID. [todo: proof of this]\n- The ring $\\mathbb{Z}_6$ is *not* a PID, because it is not an integral domain. (Indeed, $3 \\times 2 = 0$ in this ring.)\n\nThere are examples of PIDs which are not Euclidean domains, but they are mostly uninteresting.\nOne such ring is $\\mathbb{Z}[\\frac{1}{2} (1+\\sqrt{-19})]$. ([Proof.](http://www.maths.qmul.ac.uk/~raw/MTH5100/PIDnotED.pdf))\n\n# Properties\n\n- Every PID is a [-unique_factorisation_domain]. ([principal_ideal_domain_has_unique_factorisation Proof]; this fact is not trivial.) The converse is false; see the case $\\mathbb{Z}[X]$ above.\n- In a PID, "[5m2 prime]" and "[5m1 irreducible]" coincide. ([5mf Proof.]) This fact also characterises the [maximal_ideal maximal ideals] of PIDs.\n- Every PID is trivially [noetherian_ring Noetherian]: every ideal is not just *finitely* generated, but generated by a single element.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens',
    'EricBruylant'
  ],
  childIds: [],
  parentIds: [
    'algebraic_ring'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18366',
      pageId: 'principal_ideal_domain',
      userId: 'EricBruylant',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-08-04 16:10:18',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'removed empty hidden thing, best avoid dashing hopes of a proof'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18226',
      pageId: 'principal_ideal_domain',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-08-03 16:32:53',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18224',
      pageId: 'principal_ideal_domain',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-08-03 16:31:53',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18222',
      pageId: 'principal_ideal_domain',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-08-03 16:31:08',
      auxPageId: 'algebraic_ring',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18220',
      pageId: 'principal_ideal_domain',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-08-03 16:31:07',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}