{ localUrl: '../page/principal_ideal_domain.html', arbitalUrl: 'https://arbital.com/p/principal_ideal_domain', rawJsonUrl: '../raw/5r5.json', likeableId: '3333', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'EricBruylant' ], pageId: 'principal_ideal_domain', edit: '4', editSummary: 'removed empty hidden thing, best avoid dashing hopes of a proof', prevEdit: '3', currentEdit: '4', wasPublished: 'true', type: 'wiki', title: 'Principal ideal domain', clickbait: 'A principal ideal domain is a kind of ring, in which all ideals have a certain nice form.', textLength: '2654', alias: 'principal_ideal_domain', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'EricBruylant', editCreatedAt: '2016-08-04 16:10:18', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-08-03 16:31:07', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '1', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '38', text: '[summary: A principal ideal domain is an [-5md] in which every [ideal_ring_theory ideal] has a single generator.]\n\nIn [3gq ring theory], an [-5md] is a **principal ideal domain** (or **PID**) if every [ideal_ring_theory ideal] can be generated by a single element.\nThat is, for every ideal $I$ there is an element $i \\in I$ such that $\\langle i \\rangle = I$; equivalently, every element of $I$ is a multiple of $i$.\n\nSince ideals are [5r6 kernels] of [ring_homomorphism ring homomorphisms] ([5r9 proof]), this is saying that a PID $R$ has the special property that *every* ring homomorphism from $R$ acts "nearly non-trivially", in that the collection of things it sends to the identity is just "one particular element, and everything that is forced by that, but nothing else".\n\n# Examples\n\n- Every [euclidean_domain Euclidean domain] is a PID. ([euclidean_domain_is_pid Proof.])\n- Therefore $\\mathbb{Z}$ is a PID, because it is a [euclidean_domain Euclidean domain]. (Its Euclidean function is "take the modulus".)\n- Every [481 field] is a PID because every ideal is either the singleton $\\{ 0 \\}$ (i.e. generated by $0$) or else is the entire ring (i.e. generated by $1$).\n- The [polynomial_ring ring $F[X]$ of polynomials] over a field $F$ is a PID, because it is a Euclidean domain. (Its Euclidean function is "take the [polynomial_degree degree] of the polynomial".)\n- The ring of [gaussian_integer Gaussian integers], $\\mathbb{Z}[i]$, is a PID because it is a Euclidean domain. ([gaussian_integers_is_pid Proof]; its Euclidean function is "take the [norm_complex_number norm]".)\n- The ring $\\mathbb{Z}[X]$ (of integer-coefficient polynomials) is *not* a PID, because the ideal $\\langle 2, X \\rangle$ is not principal. This is an example of a [-unique_factorisation_domain] which is not a PID. [todo: proof of this]\n- The ring $\\mathbb{Z}_6$ is *not* a PID, because it is not an integral domain. (Indeed, $3 \\times 2 = 0$ in this ring.)\n\nThere are examples of PIDs which are not Euclidean domains, but they are mostly uninteresting.\nOne such ring is $\\mathbb{Z}[\\frac{1}{2} (1+\\sqrt{-19})]$. ([Proof.](http://www.maths.qmul.ac.uk/~raw/MTH5100/PIDnotED.pdf))\n\n# Properties\n\n- Every PID is a [-unique_factorisation_domain]. ([principal_ideal_domain_has_unique_factorisation Proof]; this fact is not trivial.) The converse is false; see the case $\\mathbb{Z}[X]$ above.\n- In a PID, "[5m2 prime]" and "[5m1 irreducible]" coincide. ([5mf Proof.]) This fact also characterises the [maximal_ideal maximal ideals] of PIDs.\n- Every PID is trivially [noetherian_ring Noetherian]: every ideal is not just *finitely* generated, but generated by a single element.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens', 'EricBruylant' ], childIds: [], parentIds: [ 'algebraic_ring' ], commentIds: [], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18366', pageId: 'principal_ideal_domain', userId: 'EricBruylant', edit: '4', type: 'newEdit', createdAt: '2016-08-04 16:10:18', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'removed empty hidden thing, best avoid dashing hopes of a proof' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18226', pageId: 'principal_ideal_domain', userId: 'PatrickStevens', edit: '3', type: 'newEdit', createdAt: '2016-08-03 16:32:53', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18224', pageId: 'principal_ideal_domain', userId: 'PatrickStevens', edit: '2', type: 'newEdit', createdAt: '2016-08-03 16:31:53', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18222', pageId: 'principal_ideal_domain', userId: 'PatrickStevens', edit: '0', type: 'newParent', createdAt: '2016-08-03 16:31:08', auxPageId: 'algebraic_ring', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18220', pageId: 'principal_ideal_domain', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-08-03 16:31:07', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }