{
localUrl: '../page/principal_ideal_domain.html',
arbitalUrl: 'https://arbital.com/p/principal_ideal_domain',
rawJsonUrl: '../raw/5r5.json',
likeableId: '3333',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'EricBruylant'
],
pageId: 'principal_ideal_domain',
edit: '4',
editSummary: 'removed empty hidden thing, best avoid dashing hopes of a proof',
prevEdit: '3',
currentEdit: '4',
wasPublished: 'true',
type: 'wiki',
title: 'Principal ideal domain',
clickbait: 'A principal ideal domain is a kind of ring, in which all ideals have a certain nice form.',
textLength: '2654',
alias: 'principal_ideal_domain',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'EricBruylant',
editCreatedAt: '2016-08-04 16:10:18',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-08-03 16:31:07',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '1',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '38',
text: '[summary: A principal ideal domain is an [-5md] in which every [ideal_ring_theory ideal] has a single generator.]\n\nIn [3gq ring theory], an [-5md] is a **principal ideal domain** (or **PID**) if every [ideal_ring_theory ideal] can be generated by a single element.\nThat is, for every ideal $I$ there is an element $i \\in I$ such that $\\langle i \\rangle = I$; equivalently, every element of $I$ is a multiple of $i$.\n\nSince ideals are [5r6 kernels] of [ring_homomorphism ring homomorphisms] ([5r9 proof]), this is saying that a PID $R$ has the special property that *every* ring homomorphism from $R$ acts "nearly non-trivially", in that the collection of things it sends to the identity is just "one particular element, and everything that is forced by that, but nothing else".\n\n# Examples\n\n- Every [euclidean_domain Euclidean domain] is a PID. ([euclidean_domain_is_pid Proof.])\n- Therefore $\\mathbb{Z}$ is a PID, because it is a [euclidean_domain Euclidean domain]. (Its Euclidean function is "take the modulus".)\n- Every [481 field] is a PID because every ideal is either the singleton $\\{ 0 \\}$ (i.e. generated by $0$) or else is the entire ring (i.e. generated by $1$).\n- The [polynomial_ring ring $F[X]$ of polynomials] over a field $F$ is a PID, because it is a Euclidean domain. (Its Euclidean function is "take the [polynomial_degree degree] of the polynomial".)\n- The ring of [gaussian_integer Gaussian integers], $\\mathbb{Z}[i]$, is a PID because it is a Euclidean domain. ([gaussian_integers_is_pid Proof]; its Euclidean function is "take the [norm_complex_number norm]".)\n- The ring $\\mathbb{Z}[X]$ (of integer-coefficient polynomials) is *not* a PID, because the ideal $\\langle 2, X \\rangle$ is not principal. This is an example of a [-unique_factorisation_domain] which is not a PID. [todo: proof of this]\n- The ring $\\mathbb{Z}_6$ is *not* a PID, because it is not an integral domain. (Indeed, $3 \\times 2 = 0$ in this ring.)\n\nThere are examples of PIDs which are not Euclidean domains, but they are mostly uninteresting.\nOne such ring is $\\mathbb{Z}[\\frac{1}{2} (1+\\sqrt{-19})]$. ([Proof.](http://www.maths.qmul.ac.uk/~raw/MTH5100/PIDnotED.pdf))\n\n# Properties\n\n- Every PID is a [-unique_factorisation_domain]. ([principal_ideal_domain_has_unique_factorisation Proof]; this fact is not trivial.) The converse is false; see the case $\\mathbb{Z}[X]$ above.\n- In a PID, "[5m2 prime]" and "[5m1 irreducible]" coincide. ([5mf Proof.]) This fact also characterises the [maximal_ideal maximal ideals] of PIDs.\n- Every PID is trivially [noetherian_ring Noetherian]: every ideal is not just *finitely* generated, but generated by a single element.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens',
'EricBruylant'
],
childIds: [],
parentIds: [
'algebraic_ring'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18366',
pageId: 'principal_ideal_domain',
userId: 'EricBruylant',
edit: '4',
type: 'newEdit',
createdAt: '2016-08-04 16:10:18',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'removed empty hidden thing, best avoid dashing hopes of a proof'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18226',
pageId: 'principal_ideal_domain',
userId: 'PatrickStevens',
edit: '3',
type: 'newEdit',
createdAt: '2016-08-03 16:32:53',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18224',
pageId: 'principal_ideal_domain',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-08-03 16:31:53',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18222',
pageId: 'principal_ideal_domain',
userId: 'PatrickStevens',
edit: '0',
type: 'newParent',
createdAt: '2016-08-03 16:31:08',
auxPageId: 'algebraic_ring',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18220',
pageId: 'principal_ideal_domain',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-08-03 16:31:07',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}