{
localUrl: '../page/product_is_unique_up_to_isomorphism.html',
arbitalUrl: 'https://arbital.com/p/product_is_unique_up_to_isomorphism',
rawJsonUrl: '../raw/60v.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: 'product_is_unique_up_to_isomorphism',
edit: '2',
editSummary: '',
prevEdit: '1',
currentEdit: '2',
wasPublished: 'true',
type: 'wiki',
title: 'Product is unique up to isomorphism',
clickbait: 'If something satisfies the universal property of the product, then it is uniquely specified by that property, up to isomorphism.',
textLength: '3749',
alias: 'product_is_unique_up_to_isomorphism',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-08-28 14:53:27',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-08-28 14:52:50',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '23',
text: '[summary: Here, we prove that the [-5zv] characterises objects uniquely up to [4f4]. That is, if two objects both satisfy the universal property of the product of $A$ and $B$, then they are isomorphic objects.]\n\nRecall the [-600] of the [5zv product]:\n\n> Given objects $A$ and $B$, we define the *product* to be the following collection of three objects, if it exists: $$A \\times B \\\\ \\pi_A: A \\times B \\to A \\\\ \\pi_B : A \\times B \\to B$$ with the requirement that for every object $X$ and every pair of maps $f_A: X \\to A, f_B: X \\to B$, there is a *unique* map $f: X \\to A \\times B$ such that $\\pi_A \\circ f = f_A$ and $\\pi_B \\circ f = f_B$.\n\nWe wish to show that if the collections $(R, \\pi_A, \\pi_B)$ and $(S, \\phi_A, \\phi_B)$ satisfy the above condition, then there is an [-4f4] between $R$ and $S$. %%note: I'd write $A \\times_1 B$ and $A \\times_2 B$ instead of $R$ and $S$, except that would be really unwieldy. Just remember that $R$ and $S$ are both standing for products of $A$ and $B$.%%\n\n# Proof\n\nThe proof follows a pattern which is standard for these things.\n\nSince $R$ is a product of $A$ and $B$, we can let $X = S$ in the universal property to obtain:\n\n> For every pair of maps $f_A: S \\to A, f_B: S \\to B$ there is a unique map $f: S \\to R$ such that $\\pi_A \\circ f = f_A$ and $\\pi_B \\circ f = f_B$.\n\nNow let $f_A = \\phi_A, f_B = \\phi_B$:\n\n> There is a unique map $\\phi: S \\to R$ such that $\\pi_A \\circ \\phi = \\phi_A$ and $\\pi_B \\circ \\phi = \\phi_B$.\n\nDoing the same again but swapping $R$ for $S$ and $\\phi$ for $\\pi$ (basically starting over with the line "Since $S$ is a product of $A$ and $B$, we can let $X = R$…"), we obtain:\n\n> There is a unique map $\\pi: R \\to S$ such that $\\phi_A \\circ \\pi = \\pi_A$ and $\\phi_B \\circ \\pi = \\pi_B$.\n\nNow, $\\pi \\circ \\phi: S \\to S$ is a map which we wish to be the identity on $S$; that would get us halfway to the answer, because it would tell us that $\\pi$ is left-inverse to $\\phi$.\n\nBut we can use the universal property of $S$ once more, this time looking at maps into $S$:\n\n> For every pair of maps $f_A: S \\to A, f_B: S \\to B$ there is a unique map $f: S \\to S$ such that $\\phi_A \\circ f = f_A$ and $\\phi_B \\circ f = f_B$.\n\nLetting $f_A = \\phi_A$ and $f_B = \\phi_B$, we obtain:\n\n> There is a unique map $f: S \\to S$ such that $\\phi_A \\circ f = \\phi_A$ and $\\phi_B \\circ f = \\phi_B$.\n\nBut I claim that both the identity $1_S$ and also $\\pi \\circ \\phi$ satisfy the same property as $f$, and hence they're equal by the uniqueness of $f$.\nIndeed, \n\n- $1_S$ certainly satisfies the property, since that would just say that $\\phi_A = \\phi_A$ and $\\phi_B = \\phi_B$;\n- $\\pi \\circ \\phi$ satisfies the property, since we already found that $\\phi_A \\circ \\pi = \\pi_A$ and that $\\phi_B \\circ \\pi = \\pi_B$.\n\nTherefore $\\pi$ is left-inverse to $\\phi$.\n\nNow to complete the proof, we just need to repeat *exactly* the same steps but with $(R, \\pi_A, \\pi_B)$ and $(S, \\phi_A, \\phi_B)$ interchanged throughout.\nThe outcome is that $\\phi$ is left-inverse to $\\pi$.\n\nHence $\\pi$ and $\\phi$ are genuinely inverse to each other, so they are both isomorphisms $R \\to S$ and $S \\to R$ respectively.\n\n# The characterisation is not unique\n\nTo show that we can't do better than "characterised up to isomorphism", we show that the product is not characterised *uniquely*.\nIndeed, if $(A \\times B, \\pi_A, \\pi_B)$ is a product of $A$ and $B$, then so is $(B \\times A, \\pi'_A, \\pi'_B)$, where $\\pi'_A(b, a) = a$ and $\\pi'_B(b, a) = b$.\n(You can check that this does satisfy the universal property for a product of $A$ and $B$.)\n\nNotice, though, that $A \\times B$ and $B \\times A$ are isomorphic as guaranteed by the theorem.\nThe isomorphism is the map $A \\times B \\to B \\times A$ given by $(a,b) \\mapsto (b,a)$.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens'
],
childIds: [],
parentIds: [
'product_universal_property'
],
commentIds: [],
questionIds: [],
tagIds: [
'proof_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19365',
pageId: 'product_is_unique_up_to_isomorphism',
userId: 'PatrickStevens',
edit: '0',
type: 'newTag',
createdAt: '2016-08-28 14:54:07',
auxPageId: 'proof_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19364',
pageId: 'product_is_unique_up_to_isomorphism',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-08-28 14:53:27',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19363',
pageId: 'product_is_unique_up_to_isomorphism',
userId: 'PatrickStevens',
edit: '0',
type: 'newParent',
createdAt: '2016-08-28 14:52:51',
auxPageId: 'product_universal_property',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19361',
pageId: 'product_is_unique_up_to_isomorphism',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-08-28 14:52:50',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}