{ localUrl: '../page/quotient_by_subgroup_is_well_defined_iff_normal.html', arbitalUrl: 'https://arbital.com/p/quotient_by_subgroup_is_well_defined_iff_normal', rawJsonUrl: '../raw/4h9.json', likeableId: '0', likeableType: 'page', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], pageId: 'quotient_by_subgroup_is_well_defined_iff_normal', edit: '2', editSummary: '', prevEdit: '1', currentEdit: '2', wasPublished: 'true', type: 'wiki', title: 'Quotient by subgroup is well defined if and only if subgroup is normal', clickbait: '', textLength: '1950', alias: 'quotient_by_subgroup_is_well_defined_iff_normal', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-06-20 08:58:24', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-06-17 10:58:44', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '23', text: 'Let $G$ be a [-3gd] and $N$ a [-4h6] of $G$.\nThen we may define the *quotient group* $G/N$ to be the set of [4j4 left cosets] $gN$ of $N$ in $G$, with the group operation that $gN + hN = (gh)N$.\nThis is well-defined if and only if $N$ is normal.\n\n# Proof\n\n## $N$ normal implies $G/N$ well-defined\n\nRecall that $G/N$ is well-defined if "it doesn't matter which way we represent a coset": whichever coset representatives we use, we get the same answer.\n\nSuppose $N$ is a normal subgroup of $G$.\nWe need to show that given two representatives $g_1 N = g_2 N$ of a coset, and given representatives $h_1 N = h_2 N$ of another coset, that $(g_1 h_1) N = (g_2 h_2)N$.\n\nSo given an element of $g_1 h_1 N$, we need to show it is in $g_2 h_2 N$, and vice versa.\n\nLet $g_1 h_1 n \\in g_1 h_1 N$; we need to show that $h_2^{-1} g_2^{-1} g_1 h_1 n \\in N$, or equivalently that $h_2^{-1} g_2^{-1} g_1 h_1 \\in N$.\n\nBut $g_2^{-1} g_1 \\in N$ because $g_1 N = g_2 N$; let $g_2^{-1} g_1 = m$.\nSimilarly $h_2^{-1} h_1 \\in N$ because $h_1 N = h_2 N$; let $h_2^{-1} h_1 = p$.\n\nThen we need to show that $h_2^{-1} m h_1 \\in N$, or equivalently that $p h_1^{-1} m h_1 \\in N$.\n\nSince $N$ is closed under conjugation and $m \\in N$, we must have that $h_1^{-1} m h_1 \\in N$;\nand since $p \\in N$ and $N$ is closed under multiplication, we must have $p h_1^{-1} m h_1 \\in N$ as required.\n\n## $G/N$ well-defined implies $N$ normal\n\nFix $h \\in G$, and consider $hnh^{-1} N + hN$.\nSince the quotient is well-defined, this is $(hnh^{-1}h) N$, which is $hnN$ or $hN$ (since $nN = N$, because $N$ is a subgroup of $G$ and hence is closed under the group operation).\nBut that means $hnh^{-1}N$ is the identity element of the quotient group, since when we added it to $hN$ we obtained $hN$ itself.\n\nThat is, $hnh^{-1}N = N$.\nTherefore $hnh^{-1} \\in N$.\n\nSince this reasoning works for any $h \\in G$, it follows that $N$ is closed under conjugation by elements of $G$, and hence is normal.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens' ], childIds: [], parentIds: [ 'normal_subgroup' ], commentIds: [], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [ { id: '4112', parentId: 'normal_subgroup', childId: 'quotient_by_subgroup_is_well_defined_iff_normal', type: 'requirement', creatorId: 'AlexeiAndreev', createdAt: '2016-06-17 21:58:56', level: '1', isStrong: 'false', everPublished: 'true' } ], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14091', pageId: 'quotient_by_subgroup_is_well_defined_iff_normal', userId: 'PatrickStevens', edit: '2', type: 'newEdit', createdAt: '2016-06-20 08:58:24', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13481', pageId: 'quotient_by_subgroup_is_well_defined_iff_normal', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-06-17 10:58:44', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13478', pageId: 'quotient_by_subgroup_is_well_defined_iff_normal', userId: 'PatrickStevens', edit: '1', type: 'newRequirement', createdAt: '2016-06-17 10:33:29', auxPageId: 'normal_subgroup', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13477', pageId: 'quotient_by_subgroup_is_well_defined_iff_normal', userId: 'PatrickStevens', edit: '1', type: 'newParent', createdAt: '2016-06-17 10:33:25', auxPageId: 'normal_subgroup', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }