{
  localUrl: '../page/rationals_are_a_field.html',
  arbitalUrl: 'https://arbital.com/p/rationals_are_a_field',
  rawJsonUrl: '../raw/4zr.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'rationals_are_a_field',
  edit: '4',
  editSummary: '',
  prevEdit: '3',
  currentEdit: '4',
  wasPublished: 'true',
  type: 'wiki',
  title: 'The rationals form a field',
  clickbait: '',
  textLength: '2611',
  alias: 'rationals_are_a_field',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'JoeZeng',
  editCreatedAt: '2016-07-06 18:28:22',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-07-01 16:15:57',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '1',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '21',
  text: 'The set $\\mathbb{Q}$ of [4zq rational numbers] is a [481 field].\n\n# Proof\n\n$\\mathbb{Q}$ is a ([3jb commutative]) [3gq ring] with additive identity $\\frac{0}{1}$ (which we will write as $0$ for short) and multiplicative identity $\\frac{1}{1}$ (which we will write as $1$ for short): we check the axioms individually.\n\n- $+$ is commutative: $\\frac{a}{b} + \\frac{c}{d} = \\frac{ad+bc}{bd}$, which by commutativity of addition and multiplication in $\\mathbb{Z}$ is $\\frac{cb+da}{db} = \\frac{c}{d} + \\frac{a}{b}$\n- $0$ is an identity for $+$: have $\\frac{a}{b}+0 = \\frac{a}{b} + \\frac{0}{1} = \\frac{a \\times 1 + 0 \\times b}{b \\times 1}$, which is $\\frac{a}{b}$ because $1$ is a multiplicative identity in $\\mathbb{Z}$ and $0 \\times n = 0$ for every integer $n$.\n- Every rational has an additive inverse: $\\frac{a}{b}$ has additive inverse $\\frac{-a}{b}$.\n- $+$ is [3h4 associative]: $$\\left(\\frac{a_1}{b_1}+\\frac{a_2}{b_2}\\right)+\\frac{a_3}{b_3} = \\frac{a_1 b_2 + b_1 a_2}{b_1 b_2} + \\frac{a_3}{b_3} = \\frac{a_1 b_2 b_3 + b_1 a_2 b_3 + a_3 b_1 b_2}{b_1 b_2 b_3}$$\nwhich we can easily check is equal to $\\frac{a_1}{b_1}+\\left(\\frac{a_2}{b_2}+\\frac{a_3}{b_3}\\right)$. [todo: actually do this]\n- $\\times$ is associative, trivially: $$\\left(\\frac{a_1}{b_1} \\frac{a_2}{b_2}\\right) \\frac{a_3}{b_3} = \\frac{a_1 a_2}{b_1 b_2} \\frac{a_3}{b_3} = \\frac{a_1 a_2 a_3}{b_1 b_2 b_3} = \\frac{a_1}{b_1} \\left(\\frac{a_2 a_3}{b_2 b_3}\\right) = \\frac{a_1}{b_1} \\left(\\frac{a_2}{b_2} \\frac{a_3}{b_3}\\right)$$\n- $\\times$ is commutative, again trivially: $$\\frac{a}{b} \\frac{c}{d} = \\frac{ac}{bd} = \\frac{ca}{db} = \\frac{c}{d} \\frac{a}{b}$$\n- $1$ is an identity for $\\times$: $$\\frac{a}{b} \\times 1 = \\frac{a}{b} \\times \\frac{1}{1} = \\frac{a \\times 1}{b \\times 1} = \\frac{a}{b}$$ by the fact that $1$ is an identity for $\\times$ in $\\mathbb{Z}$.\n- $+$ distributes over $\\times$: $$\\frac{a}{b} \\left(\\frac{x_1}{y_1}+\\frac{x_2}{y_2}\\right) = \\frac{a}{b} \\frac{x_1 y_2 + x_2 y_1}{y_1 y_2} = \\frac{a \\left(x_1 y_2 + x_2 y_1\\right)}{b y_1 y_2}$$\nwhile $$\\frac{a}{b} \\frac{x_1}{y_1} + \\frac{a}{b} \\frac{x_2}{y_2} = \\frac{a x_1}{b y_1} + \\frac{a x_2}{b y_2} = \\frac{a x_1 b y_2 + b y_1 a x_2}{b^2 y_1 y_2} = \\frac{a x_1 y_2 + a y_1 x_2}{b y_1 y_2}$$\nso we are done by distributivity of $+$ over $\\times$ in $\\mathbb{Z}$.\n\nSo far we have shown that $\\mathbb{Q}$ is a ring; to show that it is a field, we need all nonzero fractions to have inverses under multiplication.\nBut if $\\frac{a}{b}$ is not $0$ (equivalently, $a \\not = 0$), then $\\frac{a}{b}$ has inverse $\\frac{b}{a}$, which does indeed exist since $a \\not = 0$.\n\nThis completes the proof.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '2',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens',
    'JoeZeng'
  ],
  childIds: [],
  parentIds: [
    'rational_number'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'proof_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '4664',
      parentId: 'algebraic_field',
      childId: 'rationals_are_a_field',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-07-01 15:57:21',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '2965',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '15731',
      pageId: 'rationals_are_a_field',
      userId: 'JoeZeng',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-07-06 18:28:22',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15137',
      pageId: 'rationals_are_a_field',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-02 23:33:15',
      auxPageId: 'proof_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15065',
      pageId: 'rationals_are_a_field',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-07-01 16:17:12',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15064',
      pageId: 'rationals_are_a_field',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-07-01 16:16:19',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15063',
      pageId: 'rationals_are_a_field',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-07-01 16:15:59',
      auxPageId: 'algebraic_field',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15062',
      pageId: 'rationals_are_a_field',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-01 16:15:58',
      auxPageId: 'rational_number',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15060',
      pageId: 'rationals_are_a_field',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-01 16:15:57',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}