{ localUrl: '../page/rationals_are_countable.html', arbitalUrl: 'https://arbital.com/p/rationals_are_countable', rawJsonUrl: '../raw/511.json', likeableId: '2933', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'EricBruylant' ], pageId: 'rationals_are_countable', edit: '1', editSummary: '', prevEdit: '0', currentEdit: '1', wasPublished: 'true', type: 'wiki', title: 'The set of rational numbers is countable', clickbait: 'Although there are "lots and lots" of rational numbers, there are still only countably many of them.', textLength: '1504', alias: 'rationals_are_countable', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-07-03 09:47:06', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-07-03 09:47:07', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '21', text: 'The set $\\mathbb{Q}$ of [4zq rational numbers] is countable: that is, there is a [499 bijection] between $\\mathbb{Q}$ and the set $\\mathbb{N}$ of [45h natural numbers].\n\n# Proof\n\nBy the [cantor_schroeder_bernstein_theorem Schröder-Bernstein theorem], it is enough to find an [4b7 injection] $\\mathbb{N} \\to \\mathbb{Q}$ and an injection $\\mathbb{Q} \\to \\mathbb{N}$.\n\nThe former is easy, because $\\mathbb{N}$ is a subset of $\\mathbb{Q}$ so the identity injection $n \\mapsto \\frac{n}{1}$ works.\n\nFor the latter, we may define a function $\\mathbb{Q} \\to \\mathbb{N}$ as follows.\nTake any rational in its lowest terms, as $\\frac{p}{q}$, say. %%note:That is, the [greatest_common_divisor GCD] of the numerator $p$ and denominator $q$ is $1$.%%\nAt most one of $p$ and $q$ is negative (if both are negative, we may just cancel $-1$ from the top and bottom of the fraction); by multiplying by $\\frac{-1}{-1}$ if necessary, assume without loss of generality that $q$ is positive.\nIf $p = 0$ then take $q = 1$.\n\nDefine $s$ to be $1$ if $p$ is positive, and $2$ if $p$ is negative.\n\nThen produce the natural number $2^p 3^q 5^s$.\n\nThe function $f: \\frac{p}{q} \\mapsto 2^p 3^q 5^s$ is injective, because [fundamental_theorem_of_arithmetic prime factorisations are unique] so if $f\\left(\\frac{p}{q}\\right) = f \\left(\\frac{a}{b} \\right)$ (with both fractions in their lowest terms, and $q$ positive) then $|p| = |a|, q=b$ and the sign of $p$ is equal to the sign of $a$.\nHence the two fractions were the same after all.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '2', maintainerCount: '2', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens' ], childIds: [], parentIds: [ 'math' ], commentIds: [], questionIds: [], tagIds: [ 'proof_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [ { id: '4713', parentId: 'rational_number', childId: 'rationals_are_countable', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-07-03 09:39:50', level: '1', isStrong: 'false', everPublished: 'true' }, { id: '4714', parentId: 'uncountable', childId: 'rationals_are_countable', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-07-03 09:39:54', level: '1', isStrong: 'false', everPublished: 'true' }, { id: '4715', parentId: 'math3', childId: 'rationals_are_countable', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-07-03 09:47:52', level: '1', isStrong: 'false', everPublished: 'true' } ], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15292', pageId: 'rationals_are_countable', userId: 'EricBruylant', edit: '0', type: 'newParent', createdAt: '2016-07-04 19:13:09', auxPageId: 'math', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15168', pageId: 'rationals_are_countable', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-07-03 09:47:52', auxPageId: 'math3', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15165', pageId: 'rationals_are_countable', userId: 'PatrickStevens', edit: '0', type: 'newTag', createdAt: '2016-07-03 09:47:08', auxPageId: 'proof_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15166', pageId: 'rationals_are_countable', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-07-03 09:47:08', auxPageId: 'rational_number', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15167', pageId: 'rationals_are_countable', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-07-03 09:47:08', auxPageId: 'uncountable', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15164', pageId: 'rationals_are_countable', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-07-03 09:47:07', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }