{
  localUrl: '../page/rationals_are_countable.html',
  arbitalUrl: 'https://arbital.com/p/rationals_are_countable',
  rawJsonUrl: '../raw/511.json',
  likeableId: '2933',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'rationals_are_countable',
  edit: '1',
  editSummary: '',
  prevEdit: '0',
  currentEdit: '1',
  wasPublished: 'true',
  type: 'wiki',
  title: 'The set of rational numbers is countable',
  clickbait: 'Although there are "lots and lots" of rational numbers, there are still only countably many of them.',
  textLength: '1504',
  alias: 'rationals_are_countable',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-07-03 09:47:06',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-07-03 09:47:07',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '21',
  text: 'The set $\\mathbb{Q}$ of [4zq rational numbers] is countable: that is, there is a [499 bijection] between $\\mathbb{Q}$ and the set $\\mathbb{N}$ of [45h natural numbers].\n\n# Proof\n\nBy the [cantor_schroeder_bernstein_theorem Schröder-Bernstein theorem], it is enough to find an [4b7 injection] $\\mathbb{N} \\to \\mathbb{Q}$ and an injection $\\mathbb{Q} \\to \\mathbb{N}$.\n\nThe former is easy, because $\\mathbb{N}$ is a subset of $\\mathbb{Q}$ so the identity injection $n \\mapsto \\frac{n}{1}$ works.\n\nFor the latter, we may define a function $\\mathbb{Q} \\to \\mathbb{N}$ as follows.\nTake any rational in its lowest terms, as $\\frac{p}{q}$, say. %%note:That is, the [greatest_common_divisor GCD] of the numerator $p$ and denominator $q$ is $1$.%%\nAt most one of $p$ and $q$ is negative (if both are negative, we may just cancel $-1$ from the top and bottom of the fraction); by multiplying by $\\frac{-1}{-1}$ if necessary, assume without loss of generality that $q$ is positive.\nIf $p = 0$ then take $q = 1$.\n\nDefine $s$ to be $1$ if $p$ is positive, and $2$ if $p$ is negative.\n\nThen produce the natural number $2^p 3^q 5^s$.\n\nThe function $f: \\frac{p}{q} \\mapsto 2^p 3^q 5^s$ is injective, because [fundamental_theorem_of_arithmetic prime factorisations are unique] so if $f\\left(\\frac{p}{q}\\right) = f \\left(\\frac{a}{b} \\right)$ (with both fractions in their lowest terms, and $q$ positive) then $|p| = |a|, q=b$ and the sign of $p$ is equal to the sign of $a$.\nHence the two fractions were the same after all.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '2',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'math'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'proof_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '4713',
      parentId: 'rational_number',
      childId: 'rationals_are_countable',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-07-03 09:39:50',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '4714',
      parentId: 'uncountable',
      childId: 'rationals_are_countable',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-07-03 09:39:54',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '4715',
      parentId: 'math3',
      childId: 'rationals_are_countable',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-07-03 09:47:52',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15292',
      pageId: 'rationals_are_countable',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-04 19:13:09',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15168',
      pageId: 'rationals_are_countable',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-07-03 09:47:52',
      auxPageId: 'math3',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15165',
      pageId: 'rationals_are_countable',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-03 09:47:08',
      auxPageId: 'proof_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15166',
      pageId: 'rationals_are_countable',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-07-03 09:47:08',
      auxPageId: 'rational_number',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15167',
      pageId: 'rationals_are_countable',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-07-03 09:47:08',
      auxPageId: 'uncountable',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15164',
      pageId: 'rationals_are_countable',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-03 09:47:07',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}