{ localUrl: '../page/set_relative_complement.html', arbitalUrl: 'https://arbital.com/p/set_relative_complement', rawJsonUrl: '../raw/5sc.json', likeableId: '0', likeableType: 'page', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], pageId: 'set_relative_complement', edit: '3', editSummary: '', prevEdit: '2', currentEdit: '3', wasPublished: 'true', type: 'wiki', title: 'Relative complement', clickbait: '', textLength: '719', alias: 'set_relative_complement', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'MYass', editCreatedAt: '2016-10-04 23:48:10', pageCreatorId: 'MYass', pageCreatedAt: '2016-08-06 03:17:23', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '20', text: 'The relative complement of two sets $A$ and $B$, denoted $A \\setminus B$, is the set of elements that are in $A$ while not in $B$.\n\n![illustration of the output of a relative complement](https://imgh.us/set_relative_complement.svg)\n\nFormally stated, where $C = A \\setminus B$\n\n$$x \\in C \\leftrightarrow (x \\in A \\land x \\notin B)$$\n\nThat is, [46m] $x$ is in the relative complement $C$, then $x$ is in $A$ and x is not in $B$.\n\nFor example,\n\n - $\\{1,2,3\\} \\setminus \\{2\\} = \\{1,3\\}$\n - $\\{1,2,3\\} \\setminus \\{9\\} = \\{1,2,3\\}$\n - $\\{1,2\\} \\setminus \\{1,2,3,4\\} = \\{\\}$\n\nIf we name the set $U$ as the set of all things, then we can define the [5s7 Absolute complement] of the set $A$, $A^\\complement$, as $U \\setminus A$ ', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: [ '0', '0', '0', '0', '0', '0', '0', '0', '0', '0' ], muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: { Summary: 'The relative complement of two sets $A$ and $B$, denoted $A \\setminus B$, is the set of elements that are in $A$ while not in $B$.' }, creatorIds: [ 'MYass' ], childIds: [], parentIds: [ 'set_theory_operation' ], commentIds: [], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [ { id: '6015', parentId: 'set_relative_complement', childId: 'set_relative_complement', type: 'subject', creatorId: 'MYass', createdAt: '2016-08-06 02:17:09', level: '2', isStrong: 'true', everPublished: 'true' } ], learnMore: [], requirements: [ { id: '6014', parentId: 'set_mathematics', childId: 'set_relative_complement', type: 'requirement', creatorId: 'MYass', createdAt: '2016-08-06 02:17:03', level: '2', isStrong: 'true', everPublished: 'true' } ], subjects: [ { id: '6015', parentId: 'set_relative_complement', childId: 'set_relative_complement', type: 'subject', creatorId: 'MYass', createdAt: '2016-08-06 02:17:09', level: '2', isStrong: 'true', everPublished: 'true' } ], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19853', pageId: 'set_relative_complement', userId: 'MYass', edit: '0', type: 'deleteTag', createdAt: '2016-10-04 23:52:10', auxPageId: 'needs_image_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3570', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '19849', pageId: 'set_relative_complement', userId: 'MYass', edit: '3', type: 'newEdit', createdAt: '2016-10-04 23:48:10', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3561', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '19829', pageId: 'set_relative_complement', userId: 'MYass', edit: '2', type: 'newEdit', createdAt: '2016-10-02 23:06:04', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19280', pageId: 'set_relative_complement', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-08-27 13:58:00', auxPageId: 'needs_image_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18481', pageId: 'set_relative_complement', userId: 'MYass', edit: '0', type: 'newRequirement', createdAt: '2016-08-06 03:17:26', auxPageId: 'set_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18482', pageId: 'set_relative_complement', userId: 'MYass', edit: '0', type: 'newTeacher', createdAt: '2016-08-06 03:17:26', auxPageId: 'set_relative_complement', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18483', pageId: 'set_relative_complement', userId: 'MYass', edit: '0', type: 'newSubject', createdAt: '2016-08-06 03:17:26', auxPageId: 'set_relative_complement', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18480', pageId: 'set_relative_complement', userId: 'MYass', edit: '0', type: 'newParent', createdAt: '2016-08-06 03:17:25', auxPageId: 'set_theory_operation', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3348', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '18478', pageId: 'set_relative_complement', userId: 'MYass', edit: '1', type: 'newEdit', createdAt: '2016-08-06 03:17:23', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }