{
  localUrl: '../page/subgroup.html',
  arbitalUrl: 'https://arbital.com/p/subgroup',
  rawJsonUrl: '../raw/576.json',
  likeableId: '3327',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'subgroup',
  edit: '1',
  editSummary: '',
  prevEdit: '0',
  currentEdit: '1',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Subgroup',
  clickbait: 'A group that lives inside a bigger group.',
  textLength: '1030',
  alias: 'subgroup',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'DylanHendrickson',
  editCreatedAt: '2016-07-07 18:00:36',
  pageCreatorId: 'DylanHendrickson',
  pageCreatedAt: '2016-07-07 18:00:36',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '21',
  text: 'A **subgroup** of a [-3gd] $(G,*)$ is a group of the form $(H,*)$, where $H \\subset G$. We usually say simply that $H$ is a subgroup of $G$. \n\nFor a subset of a group $G$ to be a subgroup, it needs to satisfy all of the group axioms itself: [3gy closure], [3h4 associativity], [54p identity], and [inverse_element inverse]. We get associativity for free because $G$ is a group. So the requirements of a subgroup $H$ are:\n\n1. **[3gy Closure]:** For any $x, y$ in $H$, $x*y$ is in $H$.\n2. **[54p Identity]:** The identity $e$ of $G$ is in $H$.\n3.  **[inverse_element Inverses]:** For any $x$ in $H$, $x^{-1}$ is also in $H$.\n\nA subgroup is called [4h6 normal] if it is closed under [4gk conjugation]. \n\nThe subgroup [-3nt] is [573 transitive]: if $H$ is a subgroup of $G$, and $I$ is a subgroup of $H$, then $I$ is a subgroup of $G$.\n\n#Examples\n\nAny group is a subgroup of itself. The [-trivial_group] is a subgroup of every group. \n\nFor any [-48l] $n$, the set of multiples of $n$ is a subgroup of the integers (under [-addition]).',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'DylanHendrickson'
  ],
  childIds: [],
  parentIds: [
    'group_mathematics'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'stub_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16031',
      pageId: 'subgroup',
      userId: 'DylanHendrickson',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-07 18:00:38',
      auxPageId: 'stub_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16030',
      pageId: 'subgroup',
      userId: 'DylanHendrickson',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-07 18:00:37',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16028',
      pageId: 'subgroup',
      userId: 'DylanHendrickson',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-07 18:00:36',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}