{ localUrl: '../page/symmetric_group_is_generated_by_transpositions.html', arbitalUrl: 'https://arbital.com/p/symmetric_group_is_generated_by_transpositions', rawJsonUrl: '../raw/4cp.json', likeableId: '2722', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'EricBruylant' ], pageId: 'symmetric_group_is_generated_by_transpositions', edit: '1', editSummary: '', prevEdit: '0', currentEdit: '1', wasPublished: 'true', type: 'wiki', title: 'Every member of a symmetric group on finitely many elements is a product of transpositions', clickbait: 'This fact can often simplify arguments about permutations: if we can show that something holds for transpositions, and that it holds for products, then it holds for everything.', textLength: '1658', alias: 'symmetric_group_is_generated_by_transpositions', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-06-15 10:03:48', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-06-15 10:03:48', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '20', text: 'Given a permutation $\\sigma$ in the [-497] $S_n$, there is a finite sequence $\\tau_1, \\dots, \\tau_k$ of [4cn transpositions] such that $\\sigma = \\tau_k \\tau_{k-1} \\dots \\tau_1$.\nEquivalently, symmetric groups are generated by their transpositions.\n\nNote that the transpositions might "overlap".\nFor example, $(123)$ is equal to $(23)(13)$, where the element $3$ appears in two of the transpositions.\n\nNote also that the sequence of transpositions is by no means uniquely determined by $\\sigma$.\n\n# Proof\n\nIt is enough to show that a [49f cycle] is expressible as a sequence of transpositions.\nOnce we have this result, we may simply replace the successive cycles in $\\sigma$'s disjoint cycle notation by the corresponding sequences of transpositions, to obtain a longer sequence of transpositions which multiplies out to give $\\sigma$.\n\nIt is easy to verify that the cycle $(a_1 a_2 \\dots a_r)$ is equal to $(a_{r-1} a_r) (a_{r-2} a_r) \\dots (a_2 a_r) (a_1 a_r)$.\nIndeed, that product of transpositions certainly does not move anything that isn't some $a_i$; while if we ask it to evaluate $a_i$, then the $(a_1 a_r)$ does nothing to it, $(a_2 a_r)$ does nothing to it, and so on up to $(a_{i-1} a_r)$.\nThen $(a_i a_r)$ sends it to $a_r$; then $(a_{i+1} a_r)$ sends the resulting $a_r$ to $a_{i+1}$; then all subsequent transpositions $(a_{i+2} a_r), \\dots, (a_{r-1} a_r)$ do nothing to the resulting $a_{i+1}$.\nSo the output when given $a_i$ is $a_{i+1}$.\n\n# Why is this useful?\n\nIt can make arguments simpler: if we can show that some property holds for transpositions and that it is closed under products, then it must hold for the entire symmetric group.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens' ], childIds: [], parentIds: [ 'symmetric_group' ], commentIds: [], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [ { id: '3971', parentId: 'transposition_in_symmetric_group', childId: 'symmetric_group_is_generated_by_transpositions', type: 'requirement', creatorId: 'AlexeiAndreev', createdAt: '2016-06-17 21:58:56', level: '1', isStrong: 'false', everPublished: 'true' } ], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12993', pageId: 'symmetric_group_is_generated_by_transpositions', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-06-15 10:03:48', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12990', pageId: 'symmetric_group_is_generated_by_transpositions', userId: 'PatrickStevens', edit: '1', type: 'newRequirement', createdAt: '2016-06-15 09:55:16', auxPageId: 'transposition_in_symmetric_group', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12989', pageId: 'symmetric_group_is_generated_by_transpositions', userId: 'PatrickStevens', edit: '1', type: 'newParent', createdAt: '2016-06-15 09:51:21', auxPageId: 'symmetric_group', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }