{
  localUrl: '../page/symmetric_group_is_generated_by_transpositions.html',
  arbitalUrl: 'https://arbital.com/p/symmetric_group_is_generated_by_transpositions',
  rawJsonUrl: '../raw/4cp.json',
  likeableId: '2722',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'symmetric_group_is_generated_by_transpositions',
  edit: '1',
  editSummary: '',
  prevEdit: '0',
  currentEdit: '1',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Every member of a symmetric group on finitely many elements is a product of transpositions',
  clickbait: 'This fact can often simplify arguments about permutations: if we can show that something holds for transpositions, and that it holds for products, then it holds for everything.',
  textLength: '1658',
  alias: 'symmetric_group_is_generated_by_transpositions',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-15 10:03:48',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-15 10:03:48',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '20',
  text: 'Given a permutation $\\sigma$ in the [-497] $S_n$, there is a finite sequence $\\tau_1, \\dots, \\tau_k$ of [4cn transpositions] such that $\\sigma = \\tau_k \\tau_{k-1} \\dots \\tau_1$.\nEquivalently, symmetric groups are generated by their transpositions.\n\nNote that the transpositions might "overlap".\nFor example, $(123)$ is equal to $(23)(13)$, where the element $3$ appears in two of the transpositions.\n\nNote also that the sequence of transpositions is by no means uniquely determined by $\\sigma$.\n\n# Proof\n\nIt is enough to show that a [49f cycle] is expressible as a sequence of transpositions.\nOnce we have this result, we may simply replace the successive cycles in $\\sigma$'s disjoint cycle notation by the corresponding sequences of transpositions, to obtain a longer sequence of transpositions which multiplies out to give $\\sigma$.\n\nIt is easy to verify that the cycle $(a_1 a_2 \\dots a_r)$ is equal to $(a_{r-1} a_r) (a_{r-2} a_r) \\dots (a_2 a_r) (a_1 a_r)$.\nIndeed, that product of transpositions certainly does not move anything that isn't some $a_i$; while if we ask it to evaluate $a_i$, then the $(a_1 a_r)$ does nothing to it, $(a_2 a_r)$ does nothing to it, and so on up to $(a_{i-1} a_r)$.\nThen $(a_i a_r)$ sends it to $a_r$; then $(a_{i+1} a_r)$ sends the resulting $a_r$ to $a_{i+1}$; then all subsequent transpositions $(a_{i+2} a_r), \\dots, (a_{r-1} a_r)$ do nothing to the resulting $a_{i+1}$.\nSo the output when given $a_i$ is $a_{i+1}$.\n\n# Why is this useful?\n\nIt can make arguments simpler: if we can show that some property holds for transpositions and that it is closed under products, then it must hold for the entire symmetric group.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'symmetric_group'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '3971',
      parentId: 'transposition_in_symmetric_group',
      childId: 'symmetric_group_is_generated_by_transpositions',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12993',
      pageId: 'symmetric_group_is_generated_by_transpositions',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-15 10:03:48',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12990',
      pageId: 'symmetric_group_is_generated_by_transpositions',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-06-15 09:55:16',
      auxPageId: 'transposition_in_symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12989',
      pageId: 'symmetric_group_is_generated_by_transpositions',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-06-15 09:51:21',
      auxPageId: 'symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}