{
  localUrl: '../page/transcendental_number.html',
  arbitalUrl: 'https://arbital.com/p/transcendental_number',
  rawJsonUrl: '../raw/5wx.json',
  likeableId: '3405',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '2',
  dislikeCount: '0',
  likeScore: '2',
  individualLikes: [
    'EricBruylant',
    'PatrickStaples'
  ],
  pageId: 'transcendental_number',
  edit: '4',
  editSummary: '',
  prevEdit: '3',
  currentEdit: '4',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Transcendental number',
  clickbait: 'A transcendental number is one which is not the root of any integer-coefficient polynomial.',
  textLength: '2649',
  alias: 'transcendental_number',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-08-20 21:59:36',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-08-17 17:58:55',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '2',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '40',
  text: '[summary(Technical): A [4bc real] or [4zw complex] number $z$ is said to be *transcendental* if there is no (nonzero) [-48l]-coefficient [-polynomial] which has $z$ as a [root_of_polynomial root].]\n\n[summary: A *transcendental* number $z$ is one such that there is no (nonzero) [-polynomial] function which outputs $0$ when given $z$ as input. $\\frac{1}{2}$, $\\sqrt{6}$, $i$ and $e^{i \\pi/2}$ are not transcendental; $\\pi$ and $e$ are both transcendental.]\n\nA [4bc real] or [4zw complex] number is said to be *transcendental* if it is not the root of any (nonzero) [-48l]-coefficient [-polynomial].\n("Transcendental" means "not [algebraic_number algebraic]".)\n\n# Examples and non-examples\n\nMany of the most interesting numbers are *not* transcendental.\n\n- Every integer is *not* transcendental (i.e. is algebraic): the integer $n$ is the root of the integer-coefficient polynomial $x-n$.\n- Every [4zq rational] is algebraic: the rational $\\frac{p}{q}$ is the root of the integer-coefficient polynomial $qx - p$.\n- $\\sqrt{2}$ is algebraic: it is a root of $x^2-2$.\n- $i$ is algebraic: it is a root of $x^2+1$.\n- $e^{i \\pi/2}$ (or $\\frac{\\sqrt{2}}{2} + \\frac{\\sqrt{2}}{2}i$) is algebraic: it is a root of $x^4+1$.\n\nHowever, $\\pi$ and $e$ are both transcendental. (Both of these are difficult to prove.)\n\n# Proof that there is a transcendental number\n\nThere is a very sneaky proof that there is some transcendental real number, though this proof doesn't give us an example.\nIn fact, the proof will tell us that "[almost_every almost all]" real numbers are transcendental.\n(The same proof can be used to demonstrate the existence of [54z irrational numbers].)\n\nIt is a fairly easy fact that the *non*-transcendental numbers (that is, the algebraic numbers) form a [-countable] subset of the real numbers.\nIndeed, the [fundamental_theorem_of_algebra Fundamental Theorem of Algebra] states that every polynomial of degree $n$ has exactly $n$ complex roots (if we count them with [multiplicity multiplicity], so that $x^2+2x+1$ has the "two" roots $x=-1$ and $x=-1$).\nThere are only countably many integer-coefficient polynomials [todo: spell out why], and each has only finitely many complex roots (and therefore only finitely many—possibly $0$—*real* roots), so there can only be countably many numbers which are roots of *any* integer-coefficient polynomial.\n\nBut there are uncountably many reals ([reals_are_uncountable proof]), so there must be some real (indeed, uncountably many!) which is not algebraic.\nThat is, there are uncountably many transcendental numbers.\n\n# Explicit construction of a transcendental number\n[todo: Liouville's constant]',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens',
    'ChrisBarnett',
    'JoeZeng'
  ],
  childIds: [],
  parentIds: [
    'number'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19052',
      pageId: 'transcendental_number',
      userId: 'PatrickStevens',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-08-20 21:59:36',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19043',
      pageId: 'transcendental_number',
      userId: 'JoeZeng',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-08-20 18:38:49',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3407',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '2',
      dislikeCount: '0',
      likeScore: '2',
      individualLikes: [],
      id: '18820',
      pageId: 'transcendental_number',
      userId: 'ChrisBarnett',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-08-18 17:26:12',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18793',
      pageId: 'transcendental_number',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-08-17 22:00:25',
      auxPageId: 'number',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18791',
      pageId: 'transcendental_number',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteParent',
      createdAt: '2016-08-17 22:00:05',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18784',
      pageId: 'transcendental_number',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-08-17 17:58:57',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18782',
      pageId: 'transcendental_number',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-08-17 17:58:55',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}