{ localUrl: '../page/uncountability_math_3.html', arbitalUrl: 'https://arbital.com/p/uncountability_math_3', rawJsonUrl: '../raw/4zp.json', likeableId: '2968', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'EricBruylant' ], pageId: 'uncountability_math_3', edit: '18', editSummary: '', prevEdit: '17', currentEdit: '18', wasPublished: 'true', type: 'wiki', title: 'Uncountability (Math 3)', clickbait: 'Formal definition of uncountability, and foundational considerations.', textLength: '1635', alias: 'uncountability_math_3', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-10-26 21:09:44', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-07-01 15:14:55', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '67', text: 'A [-3jz] $X$ is *uncountable* if there is no [499 bijection] between $X$ and [45h $\\mathbb{N}$]. Equivalently, there is no [4b7 injection] from $X$ to $\\mathbb{N}$.\n\n## Foundational Considerations ##\n\nIn set theories without the [69b axiom of choice], such as [ZF Zermelo Frankel set theory] without choice (ZF), it can be [5km consistent] that there is a [-cardinal_number] $\\kappa$ that is incomparable to $\\aleph_0$. That is, there is no injection from $\\kappa$ to $\\aleph_0$ nor from $\\aleph_0$ to $\\kappa$. In this case, cardinality is not a [540 total order], so it doesn't make sense to think of uncountability as "larger" than $\\aleph_0$. In the presence of choice, [5sh cardinality is a total order], so an uncountable set can be thought of as "larger" than a countable set.\n\nCountability in one [-model] is not necessarily countability in another. By [skolems_paradox Skolem's Paradox], there is a model of set theory $M$ where its [6gl power set] of the naturals, denoted $2^\\mathbb N_M \\in M$ is countable when considered outside the model. Of course, it is a [6fk theorem] that $2^\\mathbb N _M$ is uncountable, but that is within the model. That is, there is a bijection $f : \\mathbb N \\to 2^\\mathbb N_M$ that is not inside the model $M$ (when $f$ is considered as a set, its graph), and there is no such bijection inside $M$. This means that (un)countability is not [absoluteness absolute].\n\n## See also\n\nIf you enjoyed this explanation, consider exploring some of [3d Arbital's] other [6gg featured content]!\n\nArbital is made by people like you, if you think you can explain a mathematical concept then consider [-4d6]!', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: [ '0', '0', '0', '0', '0', '0', '0', '0', '0', '0' ], muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: { Summary: 'A [-3jz] $X$ is *uncountable* if there is no [499 bijection] between $X$ and [45h $\\mathbb{N}$]. Equivalently, there is no [4b7 injection] from $X$ to $\\mathbb{N}$.' }, creatorIds: [ 'PatrickStevens', 'DanielSatanove', 'EricBruylant', 'DylanHendrickson' ], childIds: [], parentIds: [ 'uncountable' ], commentIds: [], questionIds: [], tagIds: [ 'c_class_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [ { id: '4660', parentId: 'math3', childId: 'uncountability_math_3', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-07-01 15:16:32', level: '2', isStrong: 'true', everPublished: 'true' }, { id: '6632', parentId: 'axiom_of_choice', childId: 'uncountability_math_3', type: 'requirement', creatorId: 'EricBruylant', createdAt: '2016-10-26 12:04:50', level: '2', isStrong: 'false', everPublished: 'true' } ], subjects: [ { id: '6589', parentId: 'uncountable', childId: 'uncountability_math_3', type: 'subject', creatorId: 'EricBruylant', createdAt: '2016-10-20 15:28:43', level: '3', isStrong: 'true', everPublished: 'true' } ], lenses: [], lensParentId: 'uncountable', pathPages: [], learnMoreTaughtMap: { '2w0': [ '6fk' ] }, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '3673', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '20338', pageId: 'uncountability_math_3', userId: 'PatrickStevens', edit: '18', type: 'newEdit', createdAt: '2016-10-26 21:09:44', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3674', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '20337', pageId: 'uncountability_math_3', userId: 'PatrickStevens', edit: '17', type: 'newEdit', createdAt: '2016-10-26 21:07:16', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20336', pageId: 'uncountability_math_3', userId: 'EricBruylant', edit: '16', type: 'newEdit', createdAt: '2016-10-26 20:16:57', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3661', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '20330', pageId: 'uncountability_math_3', userId: 'PatrickStevens', edit: '15', type: 'newEdit', createdAt: '2016-10-26 17:24:47', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20328', pageId: 'uncountability_math_3', userId: 'EricBruylant', edit: '0', type: 'newRequirement', createdAt: '2016-10-26 12:04:51', auxPageId: 'axiom_of_choice', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20325', pageId: 'uncountability_math_3', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-10-26 12:04:03', auxPageId: 'c_class_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20327', pageId: 'uncountability_math_3', userId: 'EricBruylant', edit: '0', type: 'deleteTag', createdAt: '2016-10-26 12:04:03', auxPageId: 'b_class_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20324', pageId: 'uncountability_math_3', userId: 'EricBruylant', edit: '0', type: 'deleteTag', createdAt: '2016-10-26 12:03:56', auxPageId: 'formal_definition_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20322', pageId: 'uncountability_math_3', userId: 'EricBruylant', edit: '14', type: 'newEdit', createdAt: '2016-10-26 12:03:44', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'added clickbait, greenlinked N' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20316', pageId: 'uncountability_math_3', userId: 'DanielSatanove', edit: '13', type: 'newEdit', createdAt: '2016-10-25 22:38:47', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20315', pageId: 'uncountability_math_3', userId: 'DanielSatanove', edit: '12', type: 'newEdit', createdAt: '2016-10-25 22:37:43', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20314', pageId: 'uncountability_math_3', userId: 'DanielSatanove', edit: '11', type: 'newEdit', createdAt: '2016-10-25 22:36:39', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20313', pageId: 'uncountability_math_3', userId: 'DanielSatanove', edit: '10', type: 'newEdit', createdAt: '2016-10-25 22:35:37', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3662', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '20311', pageId: 'uncountability_math_3', userId: 'DanielSatanove', edit: '9', type: 'newEdit', createdAt: '2016-10-25 21:45:30', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3664', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '20308', pageId: 'uncountability_math_3', userId: 'DanielSatanove', edit: '8', type: 'newEdit', createdAt: '2016-10-25 21:20:57', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3663', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '20307', pageId: 'uncountability_math_3', userId: 'DanielSatanove', edit: '7', type: 'newEdit', createdAt: '2016-10-25 20:48:44', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20181', pageId: 'uncountability_math_3', userId: 'EricBruylant', edit: '0', type: 'newSubject', createdAt: '2016-10-20 15:28:43', auxPageId: 'uncountable', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19863', pageId: 'uncountability_math_3', userId: 'DylanHendrickson', edit: '6', type: 'newEdit', createdAt: '2016-10-05 19:44:16', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18555', pageId: 'uncountability_math_3', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-08-07 18:59:54', auxPageId: 'b_class_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3364', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '18554', pageId: 'uncountability_math_3', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-08-07 18:59:08', auxPageId: 'formal_definition_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15087', pageId: 'uncountability_math_3', userId: 'PatrickStevens', edit: '5', type: 'newEdit', createdAt: '2016-07-01 21:12:22', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15086', pageId: 'uncountability_math_3', userId: 'PatrickStevens', edit: '4', type: 'newEdit', createdAt: '2016-07-01 21:12:09', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15084', pageId: 'uncountability_math_3', userId: 'PatrickStevens', edit: '3', type: 'newEdit', createdAt: '2016-07-01 21:07:56', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15047', pageId: 'uncountability_math_3', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-07-01 15:16:32', auxPageId: 'math3', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15046', pageId: 'uncountability_math_3', userId: 'PatrickStevens', edit: '0', type: 'newParent', createdAt: '2016-07-01 15:15:51', auxPageId: 'uncountable', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15044', pageId: 'uncountability_math_3', userId: 'PatrickStevens', edit: '2', type: 'newEdit', createdAt: '2016-07-01 15:15:23', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15043', pageId: 'uncountability_math_3', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-07-01 15:14:55', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }