{
  localUrl: '../page/uncountability_math_3.html',
  arbitalUrl: 'https://arbital.com/p/uncountability_math_3',
  rawJsonUrl: '../raw/4zp.json',
  likeableId: '2968',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'uncountability_math_3',
  edit: '18',
  editSummary: '',
  prevEdit: '17',
  currentEdit: '18',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Uncountability (Math 3)',
  clickbait: 'Formal definition of uncountability, and foundational considerations.',
  textLength: '1635',
  alias: 'uncountability_math_3',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-10-26 21:09:44',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-07-01 15:14:55',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '67',
  text: 'A [-3jz] $X$ is *uncountable* if there is no [499 bijection] between $X$ and  [45h $\\mathbb{N}$]. Equivalently, there is no [4b7 injection] from $X$ to $\\mathbb{N}$.\n\n## Foundational Considerations ##\n\nIn set theories without the [69b axiom of choice], such as [ZF Zermelo Frankel set theory] without choice (ZF), it can be [5km consistent] that there is a [-cardinal_number] $\\kappa$ that is incomparable to $\\aleph_0$. That is, there is no injection from $\\kappa$ to $\\aleph_0$ nor from $\\aleph_0$ to $\\kappa$. In this case, cardinality is not a [540 total order], so it doesn't make sense to think of uncountability as "larger" than $\\aleph_0$. In the presence of choice, [5sh cardinality is a total order], so an uncountable set can be thought of as "larger" than a countable set.\n\nCountability in one [-model] is not necessarily countability in another. By [skolems_paradox Skolem's Paradox], there is a model of set theory $M$ where its [6gl power set] of the naturals, denoted $2^\\mathbb N_M \\in M$ is countable when considered outside the model. Of course, it is a [6fk theorem] that $2^\\mathbb N _M$ is uncountable, but that is within the model. That is, there is a bijection $f : \\mathbb N \\to 2^\\mathbb N_M$ that is not inside the model $M$ (when $f$ is considered as a set, its graph), and there is no such bijection inside $M$. This means that (un)countability is not [absoluteness absolute].\n\n## See also\n\nIf you enjoyed this explanation, consider exploring some of [3d Arbital's] other [6gg featured content]!\n\nArbital is made by people like you, if you think you can explain a mathematical concept then consider [-4d6]!',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: [
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0'
  ],
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {
    Summary: 'A [-3jz] $X$ is *uncountable* if there is no [499 bijection] between $X$ and  [45h $\\mathbb{N}$]. Equivalently, there is no [4b7 injection] from $X$ to $\\mathbb{N}$.'
  },
  creatorIds: [
    'PatrickStevens',
    'DanielSatanove',
    'EricBruylant',
    'DylanHendrickson'
  ],
  childIds: [],
  parentIds: [
    'uncountable'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'c_class_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '4660',
      parentId: 'math3',
      childId: 'uncountability_math_3',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-07-01 15:16:32',
      level: '2',
      isStrong: 'true',
      everPublished: 'true'
    },
    {
      id: '6632',
      parentId: 'axiom_of_choice',
      childId: 'uncountability_math_3',
      type: 'requirement',
      creatorId: 'EricBruylant',
      createdAt: '2016-10-26 12:04:50',
      level: '2',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [
    {
      id: '6589',
      parentId: 'uncountable',
      childId: 'uncountability_math_3',
      type: 'subject',
      creatorId: 'EricBruylant',
      createdAt: '2016-10-20 15:28:43',
      level: '3',
      isStrong: 'true',
      everPublished: 'true'
    }
  ],
  lenses: [],
  lensParentId: 'uncountable',
  pathPages: [],
  learnMoreTaughtMap: {
    '2w0': [
      '6fk'
    ]
  },
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '3673',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '20338',
      pageId: 'uncountability_math_3',
      userId: 'PatrickStevens',
      edit: '18',
      type: 'newEdit',
      createdAt: '2016-10-26 21:09:44',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3674',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '20337',
      pageId: 'uncountability_math_3',
      userId: 'PatrickStevens',
      edit: '17',
      type: 'newEdit',
      createdAt: '2016-10-26 21:07:16',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20336',
      pageId: 'uncountability_math_3',
      userId: 'EricBruylant',
      edit: '16',
      type: 'newEdit',
      createdAt: '2016-10-26 20:16:57',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3661',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '20330',
      pageId: 'uncountability_math_3',
      userId: 'PatrickStevens',
      edit: '15',
      type: 'newEdit',
      createdAt: '2016-10-26 17:24:47',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20328',
      pageId: 'uncountability_math_3',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-10-26 12:04:51',
      auxPageId: 'axiom_of_choice',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20325',
      pageId: 'uncountability_math_3',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-10-26 12:04:03',
      auxPageId: 'c_class_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20327',
      pageId: 'uncountability_math_3',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-10-26 12:04:03',
      auxPageId: 'b_class_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20324',
      pageId: 'uncountability_math_3',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-10-26 12:03:56',
      auxPageId: 'formal_definition_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20322',
      pageId: 'uncountability_math_3',
      userId: 'EricBruylant',
      edit: '14',
      type: 'newEdit',
      createdAt: '2016-10-26 12:03:44',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'added clickbait, greenlinked N'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20316',
      pageId: 'uncountability_math_3',
      userId: 'DanielSatanove',
      edit: '13',
      type: 'newEdit',
      createdAt: '2016-10-25 22:38:47',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20315',
      pageId: 'uncountability_math_3',
      userId: 'DanielSatanove',
      edit: '12',
      type: 'newEdit',
      createdAt: '2016-10-25 22:37:43',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20314',
      pageId: 'uncountability_math_3',
      userId: 'DanielSatanove',
      edit: '11',
      type: 'newEdit',
      createdAt: '2016-10-25 22:36:39',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20313',
      pageId: 'uncountability_math_3',
      userId: 'DanielSatanove',
      edit: '10',
      type: 'newEdit',
      createdAt: '2016-10-25 22:35:37',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3662',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '20311',
      pageId: 'uncountability_math_3',
      userId: 'DanielSatanove',
      edit: '9',
      type: 'newEdit',
      createdAt: '2016-10-25 21:45:30',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3664',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '20308',
      pageId: 'uncountability_math_3',
      userId: 'DanielSatanove',
      edit: '8',
      type: 'newEdit',
      createdAt: '2016-10-25 21:20:57',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3663',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '20307',
      pageId: 'uncountability_math_3',
      userId: 'DanielSatanove',
      edit: '7',
      type: 'newEdit',
      createdAt: '2016-10-25 20:48:44',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20181',
      pageId: 'uncountability_math_3',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newSubject',
      createdAt: '2016-10-20 15:28:43',
      auxPageId: 'uncountable',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19863',
      pageId: 'uncountability_math_3',
      userId: 'DylanHendrickson',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-10-05 19:44:16',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18555',
      pageId: 'uncountability_math_3',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-07 18:59:54',
      auxPageId: 'b_class_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3364',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '18554',
      pageId: 'uncountability_math_3',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-07 18:59:08',
      auxPageId: 'formal_definition_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15087',
      pageId: 'uncountability_math_3',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-07-01 21:12:22',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15086',
      pageId: 'uncountability_math_3',
      userId: 'PatrickStevens',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-07-01 21:12:09',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15084',
      pageId: 'uncountability_math_3',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-07-01 21:07:56',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15047',
      pageId: 'uncountability_math_3',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-07-01 15:16:32',
      auxPageId: 'math3',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15046',
      pageId: 'uncountability_math_3',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-01 15:15:51',
      auxPageId: 'uncountable',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15044',
      pageId: 'uncountability_math_3',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-07-01 15:15:23',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15043',
      pageId: 'uncountability_math_3',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-01 15:14:55',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}