{
  localUrl: '../page/up_to_isomorphism.html',
  arbitalUrl: 'https://arbital.com/p/up_to_isomorphism',
  rawJsonUrl: '../raw/65y.json',
  likeableId: '3537',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'up_to_isomorphism',
  edit: '2',
  editSummary: 'Made summary display in-page too, added clickbait as base for brief summary.',
  prevEdit: '1',
  currentEdit: '2',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Up to isomorphism',
  clickbait: 'A phrase mathematicians use when saying "we only care about the structure of an object, not about specific implementation details of the object".',
  textLength: '2017',
  alias: 'up_to_isomorphism',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'EricBruylant',
  editCreatedAt: '2016-09-24 19:29:22',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-09-24 08:55:35',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '31',
  text: '[summary(brief):A phrase mathematicians use when saying "we only care about the [structure_mathematics structure] of an [object_mathematics object], not about specific implementation details of the object".]\n\n[summary: "The property $P$ holds up to isomorphism" is a phrase which means "we might say an object $X$ has property $P$, but that's an abuse of notation. When we say that, we really mean that there is an object [4f4 isomorphic] to $X$ which has property $P$". Essentially, it means "the property might not hold as stated, but if we replace the idea of *equality* by the idea of *isomorphism*, then the property holds".\n\nRelatedly, "The object $X$ is [5ss well-defined] up to isomorphism" means "if we replace $X$ by an object isomorphic to $X$, we still obtain something which satisfies the definition of $X$."]\n\n"The property $P$ holds up to isomorphism" is a phrase which means "we might say an object $X$ has property $P$, but that's an abuse of notation. When we say that, we really mean that there is an object [4f4 isomorphic] to $X$ which has property $P$". Essentially, it means "the property might not hold as stated, but if we replace the idea of *equality* by the idea of *isomorphism*, then the property holds".\n\nRelatedly, "The object $X$ is [5ss well-defined] up to isomorphism" means "if we replace $X$ by an object isomorphic to $X$, we still obtain something which satisfies the definition of $X$."\n\n# Examples\n\n## Groups of order $2$\n\nThere is only one [-3gd] of [3gg order] $2$ *up to isomorphism*.\nWe can define the object "group of order $2$" as "the group with two elements"; this object is well-defined up to isomorphism, in that while there are several different groups of order $2$ %%note: Two such groups are $\\{0,1\\}$ with the operation "addition [5ns modulo] $2$", and $\\{e, x \\}$ with [-54p] $e$ and the operation $x^2 = e$.%%, any two such groups are isomorphic.\nIf we don't think of isomorphic objects as being "different", then there is only one distinct group of order $2$.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens',
    'EricBruylant'
  ],
  childIds: [],
  parentIds: [
    'isomorphism'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'start_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19714',
      pageId: 'up_to_isomorphism',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-09-24 19:29:48',
      auxPageId: 'stub_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19712',
      pageId: 'up_to_isomorphism',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-09-24 19:29:47',
      auxPageId: 'start_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19711',
      pageId: 'up_to_isomorphism',
      userId: 'EricBruylant',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-09-24 19:29:22',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'Made summary display in-page too, added clickbait as base for brief summary.'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19697',
      pageId: 'up_to_isomorphism',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-09-24 08:55:36',
      auxPageId: 'stub_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19699',
      pageId: 'up_to_isomorphism',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-09-24 08:55:36',
      auxPageId: 'isomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19696',
      pageId: 'up_to_isomorphism',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-09-24 08:55:35',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}