{
  localUrl: '../page/well_ordered_set.html',
  arbitalUrl: 'https://arbital.com/p/well_ordered_set',
  rawJsonUrl: '../raw/55r.json',
  likeableId: '3098',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'KevinClancy'
  ],
  pageId: 'well_ordered_set',
  edit: '6',
  editSummary: '',
  prevEdit: '5',
  currentEdit: '6',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Well-ordered set',
  clickbait: 'An ordered set with an order that always has a "next element".',
  textLength: '1419',
  alias: 'well_ordered_set',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'DylanHendrickson',
  editCreatedAt: '2016-07-07 17:09:09',
  pageCreatorId: 'DylanHendrickson',
  pageCreatedAt: '2016-07-06 20:23:49',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '34',
  text: 'A **well-ordered set** is a [-540] $(S, \\leq)$, such that for any nonempty subset $U \\subset S$ there is some $x \\in U$ such that for every $y \\in U$, $x \\leq y$; that is, every nonempty subset of $S$ has a least element.\n\nAny finite totally ordered set is well-ordered. The simplest [infinity infinite] well-ordered set is [45h $\\mathbb N$], also called [ordinal_omega $\\omega$] in this context.\n\nEvery well-ordered set is [4f4 isomorphic] to a unique [-ordinal_number], and thus any two well-ordered sets are comparable.\n\nThe order $\\leq$ is called a "well-ordering," despite the fact that "well" is usually an adverb.\n\n#Induction on a well-ordered set\n\n[mathematical_induction] works on any well-ordered set. On well-ordered sets longer than $\\mathbb N$, this is called [-transfinite_induction]. \n\nInduction is a method of proving a statement $P(x)$ for all elements $x$ of a well-ordered set $S$. Instead of directly proving $P(x)$, you prove that if $P(y)$ holds for all $y < x$, then $P(x)$ is true. This suffices to prove $P(x)$ for all $x \\in S$.\n\n%%hidden(Show proof):\nLet $U = \\{x \\in S \\mid \\neg P(x) \\}$ be the set of elements of $S$ for which $P$ doesn't hold, and suppose $U$ is nonempty. Since $S$ is well-ordered, $U$ has a least element $x$. That means $P(y)$ is true for all $y < x$, which implies $P(x)$. So $x \\not\\in U$, which is a contradiction. Hence $U$ is empty, and $P$ holds on all of $S$.\n%%',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '0',
  maintainerCount: '0',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'DylanHendrickson',
    'JoeZeng'
  ],
  childIds: [],
  parentIds: [
    'totally_ordered_set'
  ],
  commentIds: [
    '564'
  ],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16000',
      pageId: 'well_ordered_set',
      userId: 'DylanHendrickson',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-07-07 17:09:09',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15970',
      pageId: 'well_ordered_set',
      userId: 'DylanHendrickson',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-07-07 14:08:50',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15853',
      pageId: 'well_ordered_set',
      userId: 'JoeZeng',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-07-06 23:16:27',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15846',
      pageId: 'well_ordered_set',
      userId: 'JoeZeng',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-07-06 23:04:09',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15771',
      pageId: 'well_ordered_set',
      userId: 'DylanHendrickson',
      edit: '0',
      type: 'newAlias',
      createdAt: '2016-07-06 20:24:19',
      auxPageId: '',
      oldSettingsValue: '55r',
      newSettingsValue: 'well_ordered_set'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15770',
      pageId: 'well_ordered_set',
      userId: 'DylanHendrickson',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-06 20:23:51',
      auxPageId: 'totally_ordered_set',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15768',
      pageId: 'well_ordered_set',
      userId: 'DylanHendrickson',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-06 20:23:49',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}