{ localUrl: '../page/5c9.html', arbitalUrl: 'https://arbital.com/p/5c9', rawJsonUrl: '../raw/5c9.json', likeableId: '0', likeableType: 'page', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], pageId: '5c9', edit: '1', editSummary: '', prevEdit: '0', currentEdit: '1', wasPublished: 'true', type: 'comment', title: '"Consider using [3jp] for the proof?"', clickbait: '', textLength: '35', alias: '5c9', externalUrl: '', sortChildrenBy: 'recentFirst', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'EricBruylant', editCreatedAt: '2016-07-13 21:30:19', pageCreatorId: 'EricBruylant', pageCreatedAt: '2016-07-13 21:30:19', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'true', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: 'The factorial function can be defined in a different way so that it is defined for all real numbers \\(and in fact for complex numbers too\\)\\. We define $x!$ as follows:\n$$x! = \\Gamma (x+1),$$\nwhere $\\Gamma $ is the gamma function:\n$$\\Gamma(x)=\\int_{0}^{\\infty}t^{x-1}e^{-t}\\mathrm{d} t$$\nWhy does this correspond to the factorial function as defined previously? We can prove by induction that for all positive integers $x$:\n$$\\prod_{i=1}^{x}i = \\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\nFirst, we verify for the case where $x=1$\\. Indeed:\n$$\\prod_{i=1}^{1}i = \\int_{0}^{\\infty}t^{1}e^{-t}\\mathrm{d} t$$\n$$1=1$$\nNow we suppose that the equality holds for a given $x$:\n$$\\prod_{i=1}^{x}i = \\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\nand try to prove that it holds for $x + 1$:\n$$\\prod_{i=1}^{x+1}i = \\int_{0}^{\\infty}t^{x+1}e^{-t}\\mathrm{d} t$$\nWe'll start with the induction hypothesis, and manipulate until we get the equality for $x+1$\\.\n$$\\prod_{i=1}^{x}i = \\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\n$$(x+1)\\prod_{i=1}^{x}i = (x+1)\\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\n$$\\prod_{i=1}^{x+1}i = (x+1)\\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\n$$= 0+\\int_{0}^{\\infty}(x+1)t^{x}e^{-t}\\mathrm{d} t$$\n$$= \\left (-t^{x+1}e^{-t}) \\right]_{0}^{\\infty}+\\int_{0}^{\\infty}(x+1)t^{x}e^{-t}\\mathrm{d} t$$\n$$= \\left (-t^{x+1}e^{-t}) \\right]_{0}^{\\infty}-\\int_{0}^{\\infty}(x+1)t^{x}(-e^{-t})\\mathrm{d} t$$\nBy the product rule of integration:\n$$=\\int_{0}^{\\infty}t^{x+1}e^{-t}\\mathrm{d} t$$\nThis completes the proof by induction, and that's why we can define factorials in terms of the gamma function\\.', anchorText: 'We define $x!$ as follows:', anchorOffset: '142', mergedInto: '', isDeleted: 'false', viewCount: '190', text: 'Consider using [3jp] for the proof?', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '2', maintainerCount: '2', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'EricBruylant' ], childIds: [], parentIds: [ 'factorial' ], commentIds: [ '5dc', '5df' ], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16648', pageId: '5c9', userId: 'EricBruylant', edit: '1', type: 'newEdit', createdAt: '2016-07-13 21:30:19', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }