{ localUrl: '../page/5hr.html', arbitalUrl: 'https://arbital.com/p/5hr', rawJsonUrl: '../raw/5hr.json', likeableId: '0', likeableType: 'page', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], pageId: '5hr', edit: '5', editSummary: '', prevEdit: '4', currentEdit: '5', wasPublished: 'true', type: 'wiki', title: 'Löb's theorem and computer programs', clickbait: '', textLength: '2262', alias: '5hr', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'MalcolmMcCrimmon', editCreatedAt: '2016-07-29 23:32:55', pageCreatorId: 'JaimeSevillaMolina', pageCreatedAt: '2016-07-21 16:00:02', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '5', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '76', text: 'The close relationship between [ logic and computability] allows us to frame Löb's theorem in terms of a computer program which is systematically looking for proofs of mathematical statements, `ProofSeeker(X)`.\n\nProofSeeker can be something like this:\n\n ProofSeeker(X):\n n=1\n while(True):\n if Prv(X,n): return True\n else n = n+1\n\nWhere `Prv(X,n)` is true if $n$ [ encodes] a proof of $X$%%note:See [-5gt] for more info on how to talk about provablity%%.\n\nNow we form a special sentence called a *reflection principle*, of the form $L(X)$= "*If `ProofSeeker(X)` halts, then X is true*". (This requires a [322 quine] to construct.)\n\nReflection principles are intuitively true, since ProofSeeker clearly halts iff it finds a proof of $X$, and if there is a proof of $X$, then $X$ must be true if we have chosen an appropriate [-5hh] to search for proofs. For example, let's say that `ProofSeeker` is looking for proofs within [3ft].\n\nThe question now becomes, what happens when we call `ProofSeeker` on $L(X)$? Is $PA$ capable of proving that the reflection principle for any given $X$ is true, and therefore `ProofSeeker` will eventually halt? Or will it run forever?\n\nSeveral possibilities appear:\n\n1. If $PA\\vdash X$, then certainly $PA\\vdash L(X)$, since if the consequent of $L(X)$ is provable, then the whole sentence is provable.\n2. If $PA\\vdash \\neg X$, then we cannot assert that $PA\\vdash L(X)$, for that would imply asserting that $PA\\vdash$"There is no proof of X". This is tantamount to $PA$ asserting the [-5km] of $PA$, which is forbidden by [ Gödel's second incompleteness theorem].\n3. If $X$ is undecidable in $PA$, then if it were the case that $PA\\vdash L(X)$ it would be inconsistent that $PA\\vdash \\neg X$ for the same reason as when $X$ is disprovable, and thus $PA\\vdash X$, contradicting that it was undecidable.\n\n**Löb's theorem** is the assertion that $PA$ proves the reflection principle for $X$ only if $PA$ proves $X$.\n\nOr conversely, Löb's theorem states that if $PA\\not\\vdash X$ then $PA\\not\\vdash \\square_{PA} X \\rightarrow X$.\n\nIt can be [ proved] in $PA$ and stronger systems. It has a very strong link with Gödel's second incompleteness theorem, and in fact [ they both are equivalent].', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'JaimeSevillaMolina', 'PatrickLaVictoir', 'EricRogstad', 'MalcolmMcCrimmon' ], childIds: [], parentIds: [ 'lobs_theorem' ], commentIds: [], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: 'lobs_theorem', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17766', pageId: '5hr', userId: 'MalcolmMcCrimmon', edit: '5', type: 'newEdit', createdAt: '2016-07-29 23:32:55', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3218', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '17420', pageId: '5hr', userId: 'EricRogstad', edit: '4', type: 'newEdit', createdAt: '2016-07-23 18:02:09', auxPageId: '', oldSettingsValue: '', newSettingsValue: '"if it was" -> "if it were"' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17392', pageId: '5hr', userId: 'JaimeSevillaMolina', edit: '3', type: 'newEdit', createdAt: '2016-07-23 09:22:59', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3150', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '17229', pageId: '5hr', userId: 'PatrickLaVictoir', edit: '2', type: 'newEdit', createdAt: '2016-07-21 16:58:34', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17222', pageId: '5hr', userId: 'JaimeSevillaMolina', edit: '0', type: 'newParent', createdAt: '2016-07-21 16:00:04', auxPageId: 'lobs_theorem', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17220', pageId: '5hr', userId: 'JaimeSevillaMolina', edit: '1', type: 'newEdit', createdAt: '2016-07-21 16:00:02', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }