{
localUrl: '../page/lobs_theorem.html',
arbitalUrl: 'https://arbital.com/p/lobs_theorem',
rawJsonUrl: '../raw/55w.json',
likeableId: '3113',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'EricBruylant'
],
pageId: 'lobs_theorem',
edit: '7',
editSummary: '',
prevEdit: '6',
currentEdit: '7',
wasPublished: 'true',
type: 'wiki',
title: 'Löb's theorem',
clickbait: 'Löb's theorem ',
textLength: '1644',
alias: 'lobs_theorem',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'EricRogstad',
editCreatedAt: '2016-07-30 04:03:46',
pageCreatorId: 'JaimeSevillaMolina',
pageCreatedAt: '2016-07-06 21:10:36',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '2',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '546',
text: '[summary: If $PA\\vdash Prv_{PA}(A)\\implies A$ then $PA\\vdash A$]\n\n\n\nWe trust Peano Arithmetic to correctly capture certain features of the [ standard model of arithmetic]. Furthermore, we know that Peano Arithmetic is expressive enough to [31z talk about itself] in meaningful ways. So it would certainly be great if Peano Arithmetic asserted what now is an intuition: that everything it proves is certainly true.\n\nIn formal notation, let $Prv$ stand for the [-5gt] of $PA$. Then, $Prv(T)$ is true if and only if there is a proof from the axioms and rules of inference of $PA$ of $T$. Then what we would like $PA$ to say is that $Prv(S)\\implies S$ for every sentence $S$.\n\nBut alas, $PA$ suffers from a problem of self-trust.\n\nLöb's theorem states that if $PA\\vdash Prv(S)\\implies S$ then $PA\\vdash S$. This immediately implies that if $PA$ is consistent, the sentences $PA\\vdash Prv(S)\\implies S$ are not provable when $S$ is false, even though according to our intuitive understanding of the standard model every sentence of this form must be true.\n\nThus, $PA$ is incomplete, and fails to prove a particular set of sentences that would increase massively our confidence in it.\n\nNotice that [godels_second_incompleteness_theorem Gödel's second incompleteness theorem] follows immediately from Löb's theorem, as if $PA$ is consistent, then by Löb's $PA\\nvdash Prv(0= 1)\\implies 0= 1$, which by the propositional calculus implies $PA\\nvdash \\neg Prv(0= 1)$.\n\nIt is worth remarking that Löb's theorem does not only apply to the standard provability predicate, but to every predicate satisfying the [ Hilbert-Bernais derivability conditions].',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '2',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'JaimeSevillaMolina',
'PatrickLaVictoir',
'MalcolmMcCrimmon',
'EricRogstad'
],
childIds: [
'proof_lobs_thorem',
'5hr',
'5hs'
],
parentIds: [
'math'
],
commentIds: [
'55y'
],
questionIds: [],
tagIds: [
'needs_summary_meta_tag',
'needs_accessible_summary_meta_tag',
'stub_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [
{
id: '6421',
parentId: 'lobs_theorem',
childId: 'intro_modern_logic',
type: 'subject',
creatorId: 'JaimeSevillaMolina',
createdAt: '2016-09-24 21:08:49',
level: '1',
isStrong: 'true',
everPublished: 'true'
}
],
learnMore: [],
requirements: [],
subjects: [],
lenses: [
{
id: '99',
pageId: 'lobs_theorem',
lensId: '5hr',
lensIndex: '0',
lensName: 'Computers',
lensSubtitle: '',
createdBy: '2vh',
createdAt: '2016-07-21 16:12:42',
updatedBy: '2vh',
updatedAt: '2016-07-21 16:41:18'
},
{
id: '80',
pageId: 'lobs_theorem',
lensId: 'proof_lobs_thorem',
lensIndex: '1',
lensName: 'Proof',
lensSubtitle: '',
createdBy: '2vh',
createdAt: '2016-07-10 03:05:55',
updatedBy: '2vh',
updatedAt: '2016-07-21 16:41:18'
},
{
id: '100',
pageId: 'lobs_theorem',
lensId: '5hs',
lensIndex: '2',
lensName: 'GII and Löb',
lensSubtitle: '',
createdBy: '2vh',
createdAt: '2016-07-21 16:40:54',
updatedBy: '2vh',
updatedAt: '2016-07-21 16:41:20'
}
],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19716',
pageId: 'lobs_theorem',
userId: 'JaimeSevillaMolina',
edit: '0',
type: 'newTeacher',
createdAt: '2016-09-24 21:09:31',
auxPageId: 'intro_modern_logic',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3262',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '17785',
pageId: 'lobs_theorem',
userId: 'EricRogstad',
edit: '7',
type: 'newEdit',
createdAt: '2016-07-30 04:03:46',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3259',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '17764',
pageId: 'lobs_theorem',
userId: 'MalcolmMcCrimmon',
edit: '6',
type: 'newEdit',
createdAt: '2016-07-29 23:22:43',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17244',
pageId: 'lobs_theorem',
userId: 'JaimeSevillaMolina',
edit: '5',
type: 'newEdit',
createdAt: '2016-07-21 18:23:57',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3151',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '17228',
pageId: 'lobs_theorem',
userId: 'PatrickLaVictoir',
edit: '4',
type: 'newEdit',
createdAt: '2016-07-21 16:50:05',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17226',
pageId: 'lobs_theorem',
userId: 'JaimeSevillaMolina',
edit: '0',
type: 'lensOrderChanged',
createdAt: '2016-07-21 16:41:18',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17224',
pageId: 'lobs_theorem',
userId: 'JaimeSevillaMolina',
edit: '0',
type: 'newChild',
createdAt: '2016-07-21 16:40:24',
auxPageId: '5hs',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17221',
pageId: 'lobs_theorem',
userId: 'JaimeSevillaMolina',
edit: '0',
type: 'newChild',
createdAt: '2016-07-21 16:00:04',
auxPageId: '5hr',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16664',
pageId: 'lobs_theorem',
userId: 'EricBruylant',
edit: '0',
type: 'deleteTag',
createdAt: '2016-07-13 22:27:59',
auxPageId: 'needs_technical_summary_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16662',
pageId: 'lobs_theorem',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-13 22:27:51',
auxPageId: 'needs_accessible_summary_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16336',
pageId: 'lobs_theorem',
userId: 'JaimeSevillaMolina',
edit: '3',
type: 'newEdit',
createdAt: '2016-07-10 03:07:58',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16334',
pageId: 'lobs_theorem',
userId: 'JaimeSevillaMolina',
edit: '0',
type: 'newChild',
createdAt: '2016-07-10 03:03:56',
auxPageId: 'proof_lobs_thorem',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16332',
pageId: 'lobs_theorem',
userId: 'JaimeSevillaMolina',
edit: '2',
type: 'newEdit',
createdAt: '2016-07-10 02:13:02',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15797',
pageId: 'lobs_theorem',
userId: 'EricBruylant',
edit: '0',
type: 'newParent',
createdAt: '2016-07-06 21:34:30',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15795',
pageId: 'lobs_theorem',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-06 21:34:27',
auxPageId: 'stub_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15792',
pageId: 'lobs_theorem',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-06 21:24:31',
auxPageId: 'needs_technical_summary_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15791',
pageId: 'lobs_theorem',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-06 21:24:22',
auxPageId: 'needs_summary_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15789',
pageId: 'lobs_theorem',
userId: 'JaimeSevillaMolina',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-06 21:10:36',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'true',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {
lessTechnical: {
likeableId: '3544',
likeableType: 'contentRequest',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '93',
pageId: 'lobs_theorem',
requestType: 'lessTechnical',
createdAt: '2016-09-25 16:33:41'
},
moreTechnical: {
likeableId: '3282',
likeableType: 'contentRequest',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '14',
pageId: 'lobs_theorem',
requestType: 'moreTechnical',
createdAt: '2016-07-31 21:13:54'
},
moreWords: {
likeableId: '3545',
likeableType: 'contentRequest',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '94',
pageId: 'lobs_theorem',
requestType: 'moreWords',
createdAt: '2016-09-25 16:33:47'
}
}
}