{ localUrl: '../page/lobs_theorem.html', arbitalUrl: 'https://arbital.com/p/lobs_theorem', rawJsonUrl: '../raw/55w.json', likeableId: '3113', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'EricBruylant' ], pageId: 'lobs_theorem', edit: '7', editSummary: '', prevEdit: '6', currentEdit: '7', wasPublished: 'true', type: 'wiki', title: 'Löb's theorem', clickbait: 'Löb's theorem ', textLength: '1644', alias: 'lobs_theorem', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'EricRogstad', editCreatedAt: '2016-07-30 04:03:46', pageCreatorId: 'JaimeSevillaMolina', pageCreatedAt: '2016-07-06 21:10:36', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '2', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '546', text: '[summary: If $PA\\vdash Prv_{PA}(A)\\implies A$ then $PA\\vdash A$]\n\n\n\nWe trust Peano Arithmetic to correctly capture certain features of the [ standard model of arithmetic]. Furthermore, we know that Peano Arithmetic is expressive enough to [31z talk about itself] in meaningful ways. So it would certainly be great if Peano Arithmetic asserted what now is an intuition: that everything it proves is certainly true.\n\nIn formal notation, let $Prv$ stand for the [-5gt] of $PA$. Then, $Prv(T)$ is true if and only if there is a proof from the axioms and rules of inference of $PA$ of $T$. Then what we would like $PA$ to say is that $Prv(S)\\implies S$ for every sentence $S$.\n\nBut alas, $PA$ suffers from a problem of self-trust.\n\nLöb's theorem states that if $PA\\vdash Prv(S)\\implies S$ then $PA\\vdash S$. This immediately implies that if $PA$ is consistent, the sentences $PA\\vdash Prv(S)\\implies S$ are not provable when $S$ is false, even though according to our intuitive understanding of the standard model every sentence of this form must be true.\n\nThus, $PA$ is incomplete, and fails to prove a particular set of sentences that would increase massively our confidence in it.\n\nNotice that [godels_second_incompleteness_theorem Gödel's second incompleteness theorem] follows immediately from Löb's theorem, as if $PA$ is consistent, then by Löb's $PA\\nvdash Prv(0= 1)\\implies 0= 1$, which by the propositional calculus implies $PA\\nvdash \\neg Prv(0= 1)$.\n\nIt is worth remarking that Löb's theorem does not only apply to the standard provability predicate, but to every predicate satisfying the [ Hilbert-Bernais derivability conditions].', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '2', maintainerCount: '2', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'JaimeSevillaMolina', 'PatrickLaVictoir', 'MalcolmMcCrimmon', 'EricRogstad' ], childIds: [ 'proof_lobs_thorem', '5hr', '5hs' ], parentIds: [ 'math' ], commentIds: [ '55y' ], questionIds: [], tagIds: [ 'needs_summary_meta_tag', 'needs_accessible_summary_meta_tag', 'stub_meta_tag' ], relatedIds: [], markIds: [], explanations: [ { id: '6421', parentId: 'lobs_theorem', childId: 'intro_modern_logic', type: 'subject', creatorId: 'JaimeSevillaMolina', createdAt: '2016-09-24 21:08:49', level: '1', isStrong: 'true', everPublished: 'true' } ], learnMore: [], requirements: [], subjects: [], lenses: [ { id: '99', pageId: 'lobs_theorem', lensId: '5hr', lensIndex: '0', lensName: 'Computers', lensSubtitle: '', createdBy: '2vh', createdAt: '2016-07-21 16:12:42', updatedBy: '2vh', updatedAt: '2016-07-21 16:41:18' }, { id: '80', pageId: 'lobs_theorem', lensId: 'proof_lobs_thorem', lensIndex: '1', lensName: 'Proof', lensSubtitle: '', createdBy: '2vh', createdAt: '2016-07-10 03:05:55', updatedBy: '2vh', updatedAt: '2016-07-21 16:41:18' }, { id: '100', pageId: 'lobs_theorem', lensId: '5hs', lensIndex: '2', lensName: 'GII and Löb', lensSubtitle: '', createdBy: '2vh', createdAt: '2016-07-21 16:40:54', updatedBy: '2vh', updatedAt: '2016-07-21 16:41:20' } ], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19716', pageId: 'lobs_theorem', userId: 'JaimeSevillaMolina', edit: '0', type: 'newTeacher', createdAt: '2016-09-24 21:09:31', auxPageId: 'intro_modern_logic', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3262', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '17785', pageId: 'lobs_theorem', userId: 'EricRogstad', edit: '7', type: 'newEdit', createdAt: '2016-07-30 04:03:46', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3259', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '17764', pageId: 'lobs_theorem', userId: 'MalcolmMcCrimmon', edit: '6', type: 'newEdit', createdAt: '2016-07-29 23:22:43', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17244', pageId: 'lobs_theorem', userId: 'JaimeSevillaMolina', edit: '5', type: 'newEdit', createdAt: '2016-07-21 18:23:57', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3151', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '17228', pageId: 'lobs_theorem', userId: 'PatrickLaVictoir', edit: '4', type: 'newEdit', createdAt: '2016-07-21 16:50:05', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17226', pageId: 'lobs_theorem', userId: 'JaimeSevillaMolina', edit: '0', type: 'lensOrderChanged', createdAt: '2016-07-21 16:41:18', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17224', pageId: 'lobs_theorem', userId: 'JaimeSevillaMolina', edit: '0', type: 'newChild', createdAt: '2016-07-21 16:40:24', auxPageId: '5hs', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17221', pageId: 'lobs_theorem', userId: 'JaimeSevillaMolina', edit: '0', type: 'newChild', createdAt: '2016-07-21 16:00:04', auxPageId: '5hr', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16664', pageId: 'lobs_theorem', userId: 'EricBruylant', edit: '0', type: 'deleteTag', createdAt: '2016-07-13 22:27:59', auxPageId: 'needs_technical_summary_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16662', pageId: 'lobs_theorem', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-07-13 22:27:51', auxPageId: 'needs_accessible_summary_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16336', pageId: 'lobs_theorem', userId: 'JaimeSevillaMolina', edit: '3', type: 'newEdit', createdAt: '2016-07-10 03:07:58', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16334', pageId: 'lobs_theorem', userId: 'JaimeSevillaMolina', edit: '0', type: 'newChild', createdAt: '2016-07-10 03:03:56', auxPageId: 'proof_lobs_thorem', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16332', pageId: 'lobs_theorem', userId: 'JaimeSevillaMolina', edit: '2', type: 'newEdit', createdAt: '2016-07-10 02:13:02', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15797', pageId: 'lobs_theorem', userId: 'EricBruylant', edit: '0', type: 'newParent', createdAt: '2016-07-06 21:34:30', auxPageId: 'math', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15795', pageId: 'lobs_theorem', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-07-06 21:34:27', auxPageId: 'stub_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15792', pageId: 'lobs_theorem', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-07-06 21:24:31', auxPageId: 'needs_technical_summary_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15791', pageId: 'lobs_theorem', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-07-06 21:24:22', auxPageId: 'needs_summary_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15789', pageId: 'lobs_theorem', userId: 'JaimeSevillaMolina', edit: '1', type: 'newEdit', createdAt: '2016-07-06 21:10:36', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'true', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: { lessTechnical: { likeableId: '3544', likeableType: 'contentRequest', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '93', pageId: 'lobs_theorem', requestType: 'lessTechnical', createdAt: '2016-09-25 16:33:41' }, moreTechnical: { likeableId: '3282', likeableType: 'contentRequest', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '14', pageId: 'lobs_theorem', requestType: 'moreTechnical', createdAt: '2016-07-31 21:13:54' }, moreWords: { likeableId: '3545', likeableType: 'contentRequest', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '94', pageId: 'lobs_theorem', requestType: 'moreWords', createdAt: '2016-09-25 16:33:47' } } }