{ localUrl: '../page/5hs.html', arbitalUrl: 'https://arbital.com/p/5hs', rawJsonUrl: '../raw/5hs.json', likeableId: '3149', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'PatrickLaVictoir' ], pageId: '5hs', edit: '3', editSummary: '', prevEdit: '2', currentEdit: '3', wasPublished: 'true', type: 'wiki', title: 'Gödel II and Löb's theorem', clickbait: '', textLength: '1545', alias: '5hs', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'JaimeSevillaMolina', editCreatedAt: '2016-07-25 08:03:35', pageCreatorId: 'JaimeSevillaMolina', pageCreatedAt: '2016-07-21 16:40:23', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '3', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '72', text: '[summary: [ Gödel's second incompleteness theorem] and [ Löb's theorem] are equivalent to each other. ]\n\nThe abstract form of [ Gödel's second incompleteness theorem] states that if $P$ is a provability predicate in a [5km consistent], [-axiomatizable] theory $T$ then $T\\not\\vdash \\neg P(\\ulcorner S\\urcorner)$ for a disprovable $S$.\n\nOn the other hand, [55w Löb's theorem] says that in the same conditions and for every sentence $X$, if $T\\vdash P(\\ulcorner X\\urcorner)\\rightarrow X$, then $T\\vdash X$.\n\nIt is easy to see how GII follows from Löb's. Just take $X$ to be $\\bot$, and since $T\\vdash \\neg \\bot$ (by definition of $\\bot$), Löb's theorem tells that if $T\\vdash \\neg P(\\ulcorner \\bot\\urcorner)$ then $T\\vdash \\bot$. Since we assumed $T$ to be consistent, then the consequent is false, so we conclude that $T\\neg\\vdash \\neg P(\\ulcorner \\bot\\urcorner)$.\n\nThe rest of this article exposes how to deduce Löb's theorem from GII.\n\nSuppose that $T\\vdash P(\\ulcorner X\\urcorner)\\rightarrow X$.\n\nThen $T\\vdash \\neg X \\rightarrow \\neg P(\\ulcorner X\\urcorner)$.\n\nWhich means that $T + \\neg X\\vdash \\neg P(\\ulcorner X\\urcorner)$.\n\nFrom Gödel's second incompleteness theorem, that means that $T+\\neg X$ is inconsistent, since it proves $\\neg P(\\ulcorner X\\urcorner)$ for a disprovable $X$.\n\nSince $T$ was consistent before we introduced $\\neg X$ as an axiom, then that means that $X$ is actually a consequence of $T$. By completeness, that means that we should be able to prove $X$ from $T$'s axioms, so $T\\vdash X$ and the proof is done.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: [ '0', '0', '0', '0', '0', '0', '0', '0', '0', '0' ], muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'JaimeSevillaMolina' ], childIds: [], parentIds: [ 'lobs_theorem' ], commentIds: [], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: 'lobs_theorem', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17483', pageId: '5hs', userId: 'JaimeSevillaMolina', edit: '3', type: 'newEdit', createdAt: '2016-07-25 08:03:35', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17231', pageId: '5hs', userId: 'JaimeSevillaMolina', edit: '2', type: 'newEdit', createdAt: '2016-07-21 17:07:15', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17225', pageId: '5hs', userId: 'JaimeSevillaMolina', edit: '0', type: 'newParent', createdAt: '2016-07-21 16:40:24', auxPageId: 'lobs_theorem', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17223', pageId: '5hs', userId: 'JaimeSevillaMolina', edit: '1', type: 'newEdit', createdAt: '2016-07-21 16:40:23', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }