{ localUrl: '../page/abelian_group.html', arbitalUrl: 'https://arbital.com/p/abelian_group', rawJsonUrl: '../raw/3h2.json', likeableId: '2503', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'EricRogstad' ], pageId: 'abelian_group', edit: '16', editSummary: 'Fixing commutative_operation greenlinks', prevEdit: '15', currentEdit: '16', wasPublished: 'true', type: 'wiki', title: 'Abelian group', clickbait: 'A group where the operation commutes. Named after Niels Henrik Abel. ', textLength: '2370', alias: 'abelian_group', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'EricRogstad', editCreatedAt: '2016-07-18 17:59:32', pageCreatorId: 'NateSoares', pageCreatedAt: '2016-05-09 06:11:40', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '64', text: '[summary: An abelian group is a [3gd group] where the operation is [3jb commutative]. That is, an abelian group $G$ is a pair $(X, \\bullet)$ where $X$ is a [3jz set] and $\\bullet$ is a binary [3h7 operation] obeying the four group axioms plus an axiom of commutativity:\n\n1. [3gy Closure]: For all $x, y$ in $X$, $x \\bullet y$ is defined and in $X$. We abbreviate $x \\bullet y$ as $xy$.\n2. [3h4 Associativity]: $x(yz) = (xy)z$ for all $x, y, z$ in $X$.\n3. Identity: There is an element $e$ such that for all $x$ in $X$, $xe=ex=x$.\n4. Inverses: For each $x$ in $X$ is an element $x^{-1}$ in $X$ such that $xx^{-1}=x^{-1}x=e$.\n5. [3jb Commutativity]: For all $x, y$ in $X$, $xy=yx$.\n \nAbelian groups are very "well-behaved" groups that are often easier to deal with than their non-commuting counterparts.]\n\nAn abelian group is a [3gd group] $G=(X, \\bullet)$ where $\\bullet$ is [3jb commutative]. In other words, the group operation satisfies the five axioms:\n\n1. [3gy Closure]: For all $x, y$ in $X$, $x \\bullet y$ is defined and in $X$. We abbreviate $x \\bullet y$ as $xy$.\n2. [3h4 Associativity]: $x(yz) = (xy)z$ for all $x, y, z$ in $X$.\n3. Identity: There is an element $e$ such that for all $x$ in $X$, $xe=ex=x$.\n4. Inverses: For each $x$ in $X$ is an element $x^{-1}$ in $X$ such that $xx^{-1}=x^{-1}x=e$.\n5. [3jb Commutativity]: For all $x, y$ in $X$, $xy=yx$.\n\nThe first four are the standard [3gd group axioms]; the fifth is what distinguishes abelian groups from groups. \n\nCommutativity gives us license to re-arrange chains of elements in formulas about commutative groups. For example, if in a commutative group with elements $\\{1, a, a^{-1}, b, b^{-1}, c, c^{-1}, d\\}$, we have the claim $aba^{-1}db^{-1}=d^{-1}$, we can shuffle the elements to get $aa^{-1}bb^{-1}d=d^{-1}$ and reduce this to the claim $d=d^{-1}$. This would be invalid for a nonabelian group, because $aba^{-1}$ doesn't necessarily equal $aa^{-1}b$ in general.\n\nAbelian groups are very well-behaved groups, and they are often much easier to deal with than their non-commutative counterparts. For example, every [576] of an abelian group is [4h6 normal], and all finitely generated abelian groups are a [group_theory_direct_product direct product] of [47y cyclic groups] (the [structure_theorem_for_finitely_generated_abelian_groups structure theorem for finitely generated abelian groups]). ', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'true', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'EricRogstad', 'NateSoares', 'QiaochuYuan', 'AlexeiAndreev' ], childIds: [], parentIds: [ 'group_mathematics', 'algebraic_structure' ], commentIds: [ '3sy' ], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17069', pageId: 'abelian_group', userId: 'EricRogstad', edit: '16', type: 'newEdit', createdAt: '2016-07-18 17:59:32', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'Fixing commutative_operation greenlinks' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16262', pageId: 'abelian_group', userId: 'EricRogstad', edit: '15', type: 'newEdit', createdAt: '2016-07-08 21:54:58', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'fixed Associativity greenlink' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14985', pageId: 'abelian_group', userId: 'EricRogstad', edit: '14', type: 'newEdit', createdAt: '2016-06-30 18:06:07', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'Harmonize summary and first sentence' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13066', pageId: 'abelian_group', userId: 'PatrickStevens', edit: '13', type: 'newRequiredBy', createdAt: '2016-06-15 14:59:08', auxPageId: 'dihedral_groups_are_non_abelian', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10902', pageId: 'abelian_group', userId: 'QiaochuYuan', edit: '13', type: 'newEdit', createdAt: '2016-05-25 20:34:09', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10899', pageId: 'abelian_group', userId: 'QiaochuYuan', edit: '0', type: 'newAlias', createdAt: '2016-05-25 20:30:26', auxPageId: '', oldSettingsValue: 'commutative_group', newSettingsValue: 'abelian_group' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10900', pageId: 'abelian_group', userId: 'QiaochuYuan', edit: '12', type: 'newEdit', createdAt: '2016-05-25 20:30:26', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10359', pageId: 'abelian_group', userId: 'EricRogstad', edit: '11', type: 'newEdit', createdAt: '2016-05-14 20:33:37', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10358', pageId: 'abelian_group', userId: 'EricRogstad', edit: '10', type: 'newEdit', createdAt: '2016-05-14 20:31:11', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10357', pageId: 'abelian_group', userId: 'EricRogstad', edit: '9', type: 'newEdit', createdAt: '2016-05-14 20:28:41', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10356', pageId: 'abelian_group', userId: 'EricRogstad', edit: '8', type: 'newEdit', createdAt: '2016-05-14 20:26:39', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10283', pageId: 'abelian_group', userId: 'AlexeiAndreev', edit: '7', type: 'newEdit', createdAt: '2016-05-14 00:30:15', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '9954', pageId: 'abelian_group', userId: 'NateSoares', edit: '6', type: 'newEdit', createdAt: '2016-05-11 00:05:40', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '9953', pageId: 'abelian_group', userId: 'NateSoares', edit: '5', type: 'newEdit', createdAt: '2016-05-11 00:02:05', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '9714', pageId: 'abelian_group', userId: 'NateSoares', edit: '4', type: 'newEdit', createdAt: '2016-05-09 07:04:40', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '9712', pageId: 'abelian_group', userId: 'NateSoares', edit: '3', type: 'newEdit', createdAt: '2016-05-09 07:02:55', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '9703', pageId: 'abelian_group', userId: 'NateSoares', edit: '2', type: 'newEdit', createdAt: '2016-05-09 06:12:33', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '9702', pageId: 'abelian_group', userId: 'NateSoares', edit: '1', type: 'newEdit', createdAt: '2016-05-09 06:11:40', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '9699', pageId: 'abelian_group', userId: 'NateSoares', edit: '0', type: 'newParent', createdAt: '2016-05-09 06:00:18', auxPageId: 'algebraic_structure', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '9698', pageId: 'abelian_group', userId: 'NateSoares', edit: '0', type: 'newParent', createdAt: '2016-05-09 06:00:11', auxPageId: 'group_mathematics', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }