{
  localUrl: '../page/abelian_group.html',
  arbitalUrl: 'https://arbital.com/p/abelian_group',
  rawJsonUrl: '../raw/3h2.json',
  likeableId: '2503',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricRogstad'
  ],
  pageId: 'abelian_group',
  edit: '16',
  editSummary: 'Fixing commutative_operation greenlinks',
  prevEdit: '15',
  currentEdit: '16',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Abelian group',
  clickbait: 'A group where the operation commutes. Named after Niels Henrik Abel. ',
  textLength: '2370',
  alias: 'abelian_group',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'EricRogstad',
  editCreatedAt: '2016-07-18 17:59:32',
  pageCreatorId: 'NateSoares',
  pageCreatedAt: '2016-05-09 06:11:40',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '64',
  text: '[summary: An abelian group is a [3gd group] where the operation is [3jb commutative]. That is, an abelian group $G$ is a pair $(X, \\bullet)$ where $X$ is a [3jz set] and $\\bullet$ is a binary [3h7 operation] obeying the four group axioms plus an axiom of commutativity:\n\n1. [3gy Closure]: For all $x, y$ in $X$, $x \\bullet y$ is defined and in $X$. We abbreviate $x \\bullet y$ as $xy$.\n2. [3h4 Associativity]: $x(yz) = (xy)z$ for all $x, y, z$ in $X$.\n3. Identity: There is an element $e$ such that for all $x$ in $X$, $xe=ex=x$.\n4. Inverses: For each $x$ in $X$ is an element $x^{-1}$ in $X$ such that $xx^{-1}=x^{-1}x=e$.\n5. [3jb Commutativity]: For all $x, y$ in $X$, $xy=yx$.\n \nAbelian groups are very "well-behaved" groups that are often easier to deal with than their non-commuting counterparts.]\n\nAn abelian group is a [3gd group] $G=(X, \\bullet)$ where $\\bullet$ is [3jb commutative]. In other words, the group operation satisfies the five axioms:\n\n1. [3gy Closure]: For all $x, y$ in $X$, $x \\bullet y$ is defined and in $X$. We abbreviate $x \\bullet y$ as $xy$.\n2. [3h4 Associativity]: $x(yz) = (xy)z$ for all $x, y, z$ in $X$.\n3. Identity: There is an element $e$ such that for all $x$ in $X$, $xe=ex=x$.\n4. Inverses: For each $x$ in $X$ is an element $x^{-1}$ in $X$ such that $xx^{-1}=x^{-1}x=e$.\n5. [3jb Commutativity]: For all $x, y$ in $X$, $xy=yx$.\n\nThe first four are the standard [3gd group axioms]; the fifth is what distinguishes abelian groups from groups. \n\nCommutativity gives us license to re-arrange chains of elements in formulas about commutative groups. For example, if in a commutative group with elements $\\{1, a, a^{-1}, b, b^{-1}, c, c^{-1}, d\\}$, we have the claim $aba^{-1}db^{-1}=d^{-1}$, we can shuffle the elements to get $aa^{-1}bb^{-1}d=d^{-1}$ and reduce this to the claim $d=d^{-1}$. This would be invalid for a nonabelian group, because $aba^{-1}$ doesn't necessarily equal $aa^{-1}b$ in general.\n\nAbelian groups are very well-behaved groups, and they are often much easier to deal with than their non-commutative counterparts. For example, every [576] of an abelian group is [4h6 normal], and all finitely generated abelian groups are a [group_theory_direct_product direct product] of [47y cyclic groups] (the [structure_theorem_for_finitely_generated_abelian_groups structure theorem for finitely generated abelian groups]). ',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'EricRogstad',
    'NateSoares',
    'QiaochuYuan',
    'AlexeiAndreev'
  ],
  childIds: [],
  parentIds: [
    'group_mathematics',
    'algebraic_structure'
  ],
  commentIds: [
    '3sy'
  ],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17069',
      pageId: 'abelian_group',
      userId: 'EricRogstad',
      edit: '16',
      type: 'newEdit',
      createdAt: '2016-07-18 17:59:32',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'Fixing commutative_operation greenlinks'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16262',
      pageId: 'abelian_group',
      userId: 'EricRogstad',
      edit: '15',
      type: 'newEdit',
      createdAt: '2016-07-08 21:54:58',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'fixed Associativity greenlink'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14985',
      pageId: 'abelian_group',
      userId: 'EricRogstad',
      edit: '14',
      type: 'newEdit',
      createdAt: '2016-06-30 18:06:07',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'Harmonize summary and first sentence'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13066',
      pageId: 'abelian_group',
      userId: 'PatrickStevens',
      edit: '13',
      type: 'newRequiredBy',
      createdAt: '2016-06-15 14:59:08',
      auxPageId: 'dihedral_groups_are_non_abelian',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10902',
      pageId: 'abelian_group',
      userId: 'QiaochuYuan',
      edit: '13',
      type: 'newEdit',
      createdAt: '2016-05-25 20:34:09',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10899',
      pageId: 'abelian_group',
      userId: 'QiaochuYuan',
      edit: '0',
      type: 'newAlias',
      createdAt: '2016-05-25 20:30:26',
      auxPageId: '',
      oldSettingsValue: 'commutative_group',
      newSettingsValue: 'abelian_group'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10900',
      pageId: 'abelian_group',
      userId: 'QiaochuYuan',
      edit: '12',
      type: 'newEdit',
      createdAt: '2016-05-25 20:30:26',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10359',
      pageId: 'abelian_group',
      userId: 'EricRogstad',
      edit: '11',
      type: 'newEdit',
      createdAt: '2016-05-14 20:33:37',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10358',
      pageId: 'abelian_group',
      userId: 'EricRogstad',
      edit: '10',
      type: 'newEdit',
      createdAt: '2016-05-14 20:31:11',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10357',
      pageId: 'abelian_group',
      userId: 'EricRogstad',
      edit: '9',
      type: 'newEdit',
      createdAt: '2016-05-14 20:28:41',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10356',
      pageId: 'abelian_group',
      userId: 'EricRogstad',
      edit: '8',
      type: 'newEdit',
      createdAt: '2016-05-14 20:26:39',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10283',
      pageId: 'abelian_group',
      userId: 'AlexeiAndreev',
      edit: '7',
      type: 'newEdit',
      createdAt: '2016-05-14 00:30:15',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9954',
      pageId: 'abelian_group',
      userId: 'NateSoares',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-05-11 00:05:40',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9953',
      pageId: 'abelian_group',
      userId: 'NateSoares',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-05-11 00:02:05',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9714',
      pageId: 'abelian_group',
      userId: 'NateSoares',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-05-09 07:04:40',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9712',
      pageId: 'abelian_group',
      userId: 'NateSoares',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-05-09 07:02:55',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9703',
      pageId: 'abelian_group',
      userId: 'NateSoares',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-05-09 06:12:33',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9702',
      pageId: 'abelian_group',
      userId: 'NateSoares',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-05-09 06:11:40',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9699',
      pageId: 'abelian_group',
      userId: 'NateSoares',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-05-09 06:00:18',
      auxPageId: 'algebraic_structure',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9698',
      pageId: 'abelian_group',
      userId: 'NateSoares',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-05-09 06:00:11',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}