{
localUrl: '../page/bayes_rule_probability_proof.html',
arbitalUrl: 'https://arbital.com/p/bayes_rule_probability_proof',
rawJsonUrl: '../raw/56j.json',
likeableId: '2990',
likeableType: 'page',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [
'EricBruylant',
'NateSoares'
],
pageId: 'bayes_rule_probability_proof',
edit: '3',
editSummary: '',
prevEdit: '2',
currentEdit: '3',
wasPublished: 'true',
type: 'wiki',
title: 'Proof of Bayes' rule: Probability form',
clickbait: '',
textLength: '1901',
alias: 'bayes_rule_probability_proof',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'EliezerYudkowsky',
editCreatedAt: '2016-10-08 20:26:54',
pageCreatorId: 'NateSoares',
pageCreatedAt: '2016-07-07 01:41:50',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '312',
text: 'Let $\\mathbf H$ be a [random_variable variable] in $\\mathbb P$ for the true hypothesis, and let $H_k$ be the possible values of $\\mathbf H,$ such that $H_k$ is [-1rd]. Then, Bayes' theorem states:\n\n$$\\mathbb P(H_i\\mid e) = \\dfrac{\\mathbb P(e\\mid H_i) \\cdot \\mathbb P(H_i)}{\\sum_k \\mathbb P(e\\mid H_k) \\cdot \\mathbb P(H_k)},$$\n\nwith a proof that runs as follows. By the definition of [-1rj],\n\n$$\\mathbb P(H_i\\mid e) = \\dfrac{\\mathbb P(e \\wedge H_i)}{\\mathbb P(e)} = \\dfrac{\\mathbb P(e \\mid H_i) \\cdot \\mathbb P(H_i)}{\\mathbb P(e)}$$\n\nBy the law of [law_of_marginal_probability marginal probability]:\n\n$$\\mathbb P(e) = \\sum_{k} \\mathbb P(e \\wedge H_k)$$\n\nBy the definition of conditional probability again:\n\n$$\\mathbb P(e \\wedge H_k) = \\mathbb P(e\\mid H_k) \\cdot \\mathbb P(H_k)$$\n\nDone.\n\nNote that this proof of Bayes' rule is less general than the [1xr proof] of the [1x5 odds form of Bayes' rule].\n\n## Example\n\nUsing the [22s Diseasitis] example problem, this proof runs as follows:\n\n$$\\begin{array}{c}\n\\mathbb P({sick}\\mid {positive}) = \\dfrac{\\mathbb P({positive} \\wedge {sick})}{\\mathbb P({positive})} \\\\[0.3em]\n= \\dfrac{\\mathbb P({positive} \\wedge {sick})}{\\mathbb P({positive} \\wedge {sick}) + \\mathbb P({positive} \\wedge \\neg {sick})} \\\\[0.3em]\n= \\dfrac{\\mathbb P({positive}\\mid {sick}) \\cdot \\mathbb P({sick})}{(\\mathbb P({positive}\\mid {sick}) \\cdot \\mathbb P({sick})) + (\\mathbb P({positive}\\mid \\neg {sick}) \\cdot \\mathbb P(\\neg {sick}))}\n\\end{array}\n$$\n\nNumerically:\n\n$$3/7 = \\dfrac{0.18}{0.42} = \\dfrac{0.18}{0.18 + 0.24} = \\dfrac{90\\% * 20\\%}{(90\\% * 20\\%) + (30\\% * 80\\%)}$$\n\nUsing red for sick, blue for healthy, and + signs for positive test results, the proof above can be visually depicted as follows:\n\n\n\n%todo: if we replace the other Venn diagram for the proof of Bayes' rule, we should probably update this one too.%',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: [
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0'
],
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {
Summary: 'Let $\\mathbf H$ be a [random_variable variable] in $\\mathbb P$ for the true hypothesis, and let $H_k$ be the possible values of $\\mathbf H,$ such that $H_k$ is [-1rd]. Then, Bayes' theorem states:'
},
creatorIds: [
'NateSoares',
'EricBruylant',
'EliezerYudkowsky'
],
childIds: [],
parentIds: [
'bayes_rule_proof',
'bayes_rule_probability'
],
commentIds: [],
questionIds: [],
tagIds: [
'needs_clickbait_meta_tag',
'b_class_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [
{
id: '5769',
parentId: 'bayes_rule_probability_proof',
childId: 'bayes_rule_probability_proof',
type: 'subject',
creatorId: 'AlexeiAndreev',
createdAt: '2016-08-01 23:45:42',
level: '2',
isStrong: 'true',
everPublished: 'true'
}
],
learnMore: [],
requirements: [
{
id: '5124',
parentId: 'bayes_rule',
childId: 'bayes_rule_probability_proof',
type: 'requirement',
creatorId: 'NateSoares',
createdAt: '2016-07-10 21:27:49',
level: '2',
isStrong: 'true',
everPublished: 'true'
},
{
id: '5125',
parentId: 'conditional_probability',
childId: 'bayes_rule_probability_proof',
type: 'requirement',
creatorId: 'NateSoares',
createdAt: '2016-07-10 21:27:56',
level: '2',
isStrong: 'true',
everPublished: 'true'
},
{
id: '5126',
parentId: 'probability',
childId: 'bayes_rule_probability_proof',
type: 'requirement',
creatorId: 'NateSoares',
createdAt: '2016-07-10 21:28:18',
level: '2',
isStrong: 'true',
everPublished: 'true'
},
{
id: '5636',
parentId: 'math2',
childId: 'bayes_rule_probability_proof',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-07-26 16:56:09',
level: '2',
isStrong: 'true',
everPublished: 'true'
},
{
id: '5768',
parentId: 'bayes_rule_probability',
childId: 'bayes_rule_probability_proof',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-08-01 23:45:00',
level: '2',
isStrong: 'true',
everPublished: 'true'
}
],
subjects: [
{
id: '5637',
parentId: 'bayes_rule_probability',
childId: 'bayes_rule_probability_proof',
type: 'subject',
creatorId: 'AlexeiAndreev',
createdAt: '2016-07-26 16:57:32',
level: '2',
isStrong: 'false',
everPublished: 'true'
},
{
id: '5638',
parentId: 'bayes_rule',
childId: 'bayes_rule_probability_proof',
type: 'subject',
creatorId: 'AlexeiAndreev',
createdAt: '2016-07-26 16:58:20',
level: '2',
isStrong: 'false',
everPublished: 'true'
},
{
id: '5641',
parentId: 'bayes_rule_proof',
childId: 'bayes_rule_probability_proof',
type: 'subject',
creatorId: 'AlexeiAndreev',
createdAt: '2016-07-26 17:07:57',
level: '2',
isStrong: 'false',
everPublished: 'true'
},
{
id: '5769',
parentId: 'bayes_rule_probability_proof',
childId: 'bayes_rule_probability_proof',
type: 'subject',
creatorId: 'AlexeiAndreev',
createdAt: '2016-08-01 23:45:42',
level: '2',
isStrong: 'true',
everPublished: 'true'
}
],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {
'554': [
'555'
],
'1lz': [
'1xr',
'1yc',
'1zh',
'1zm',
'220',
'552',
'6cj'
]
},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19959',
pageId: 'bayes_rule_probability_proof',
userId: 'EliezerYudkowsky',
edit: '3',
type: 'newEdit',
createdAt: '2016-10-08 20:26:55',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18228',
pageId: 'bayes_rule_probability_proof',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-03 16:34:51',
auxPageId: 'needs_clickbait_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18191',
pageId: 'bayes_rule_probability_proof',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-02 18:56:08',
auxPageId: 'b_class_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18190',
pageId: 'bayes_rule_probability_proof',
userId: 'EricBruylant',
edit: '2',
type: 'newEdit',
createdAt: '2016-08-02 18:54:43',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'added a link'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17961',
pageId: 'bayes_rule_probability_proof',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newTeacher',
createdAt: '2016-08-01 23:45:42',
auxPageId: 'bayes_rule_probability_proof',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17962',
pageId: 'bayes_rule_probability_proof',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newSubject',
createdAt: '2016-08-01 23:45:42',
auxPageId: 'bayes_rule_probability_proof',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17960',
pageId: 'bayes_rule_probability_proof',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newRequirement',
createdAt: '2016-08-01 23:45:00',
auxPageId: 'bayes_rule_probability',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17543',
pageId: 'bayes_rule_probability_proof',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newSubject',
createdAt: '2016-07-26 17:07:58',
auxPageId: 'bayes_rule_proof',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17538',
pageId: 'bayes_rule_probability_proof',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newSubject',
createdAt: '2016-07-26 16:58:21',
auxPageId: 'bayes_rule',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17536',
pageId: 'bayes_rule_probability_proof',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newSubject',
createdAt: '2016-07-26 16:57:32',
auxPageId: 'bayes_rule_probability',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17534',
pageId: 'bayes_rule_probability_proof',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newRequirement',
createdAt: '2016-07-26 16:56:09',
auxPageId: 'math2',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16408',
pageId: 'bayes_rule_probability_proof',
userId: 'NateSoares',
edit: '0',
type: 'newRequirement',
createdAt: '2016-07-10 21:28:18',
auxPageId: 'probability',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16407',
pageId: 'bayes_rule_probability_proof',
userId: 'NateSoares',
edit: '0',
type: 'newRequirement',
createdAt: '2016-07-10 21:27:57',
auxPageId: 'conditional_probability',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16406',
pageId: 'bayes_rule_probability_proof',
userId: 'NateSoares',
edit: '0',
type: 'newRequirement',
createdAt: '2016-07-10 21:27:49',
auxPageId: 'bayes_rule',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15905',
pageId: 'bayes_rule_probability_proof',
userId: 'NateSoares',
edit: '0',
type: 'newParent',
createdAt: '2016-07-07 03:20:42',
auxPageId: 'bayes_rule_probability',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15889',
pageId: 'bayes_rule_probability_proof',
userId: 'NateSoares',
edit: '0',
type: 'newParent',
createdAt: '2016-07-07 01:41:52',
auxPageId: 'bayes_rule_proof',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15887',
pageId: 'bayes_rule_probability_proof',
userId: 'NateSoares',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-07 01:41:50',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}