{ localUrl: '../page/bayes_rule_probability_proof.html', arbitalUrl: 'https://arbital.com/p/bayes_rule_probability_proof', rawJsonUrl: '../raw/56j.json', likeableId: '2990', likeableType: 'page', myLikeValue: '0', likeCount: '2', dislikeCount: '0', likeScore: '2', individualLikes: [ 'EricBruylant', 'NateSoares' ], pageId: 'bayes_rule_probability_proof', edit: '3', editSummary: '', prevEdit: '2', currentEdit: '3', wasPublished: 'true', type: 'wiki', title: 'Proof of Bayes' rule: Probability form', clickbait: '', textLength: '1901', alias: 'bayes_rule_probability_proof', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'EliezerYudkowsky', editCreatedAt: '2016-10-08 20:26:54', pageCreatorId: 'NateSoares', pageCreatedAt: '2016-07-07 01:41:50', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '312', text: 'Let $\\mathbf H$ be a [random_variable variable] in $\\mathbb P$ for the true hypothesis, and let $H_k$ be the possible values of $\\mathbf H,$ such that $H_k$ is [-1rd]. Then, Bayes' theorem states:\n\n$$\\mathbb P(H_i\\mid e) = \\dfrac{\\mathbb P(e\\mid H_i) \\cdot \\mathbb P(H_i)}{\\sum_k \\mathbb P(e\\mid H_k) \\cdot \\mathbb P(H_k)},$$\n\nwith a proof that runs as follows. By the definition of [-1rj],\n\n$$\\mathbb P(H_i\\mid e) = \\dfrac{\\mathbb P(e \\wedge H_i)}{\\mathbb P(e)} = \\dfrac{\\mathbb P(e \\mid H_i) \\cdot \\mathbb P(H_i)}{\\mathbb P(e)}$$\n\nBy the law of [law_of_marginal_probability marginal probability]:\n\n$$\\mathbb P(e) = \\sum_{k} \\mathbb P(e \\wedge H_k)$$\n\nBy the definition of conditional probability again:\n\n$$\\mathbb P(e \\wedge H_k) = \\mathbb P(e\\mid H_k) \\cdot \\mathbb P(H_k)$$\n\nDone.\n\nNote that this proof of Bayes' rule is less general than the [1xr proof] of the [1x5 odds form of Bayes' rule].\n\n## Example\n\nUsing the [22s Diseasitis] example problem, this proof runs as follows:\n\n$$\\begin{array}{c}\n\\mathbb P({sick}\\mid {positive}) = \\dfrac{\\mathbb P({positive} \\wedge {sick})}{\\mathbb P({positive})} \\\\[0.3em]\n= \\dfrac{\\mathbb P({positive} \\wedge {sick})}{\\mathbb P({positive} \\wedge {sick}) + \\mathbb P({positive} \\wedge \\neg {sick})} \\\\[0.3em]\n= \\dfrac{\\mathbb P({positive}\\mid {sick}) \\cdot \\mathbb P({sick})}{(\\mathbb P({positive}\\mid {sick}) \\cdot \\mathbb P({sick})) + (\\mathbb P({positive}\\mid \\neg {sick}) \\cdot \\mathbb P(\\neg {sick}))}\n\\end{array}\n$$\n\nNumerically:\n\n$$3/7 = \\dfrac{0.18}{0.42} = \\dfrac{0.18}{0.18 + 0.24} = \\dfrac{90\\% * 20\\%}{(90\\% * 20\\%) + (30\\% * 80\\%)}$$\n\nUsing red for sick, blue for healthy, and + signs for positive test results, the proof above can be visually depicted as follows:\n\n![bayes theorem probability](https://i.imgur.com/H9im04o.png?0)\n\n%todo: if we replace the other Venn diagram for the proof of Bayes' rule, we should probably update this one too.%', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '2', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: [ '0', '0', '0', '0', '0', '0', '0', '0', '0', '0' ], muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: { Summary: 'Let $\\mathbf H$ be a [random_variable variable] in $\\mathbb P$ for the true hypothesis, and let $H_k$ be the possible values of $\\mathbf H,$ such that $H_k$ is [-1rd]. Then, Bayes' theorem states:' }, creatorIds: [ 'NateSoares', 'EricBruylant', 'EliezerYudkowsky' ], childIds: [], parentIds: [ 'bayes_rule_proof', 'bayes_rule_probability' ], commentIds: [], questionIds: [], tagIds: [ 'needs_clickbait_meta_tag', 'b_class_meta_tag' ], relatedIds: [], markIds: [], explanations: [ { id: '5769', parentId: 'bayes_rule_probability_proof', childId: 'bayes_rule_probability_proof', type: 'subject', creatorId: 'AlexeiAndreev', createdAt: '2016-08-01 23:45:42', level: '2', isStrong: 'true', everPublished: 'true' } ], learnMore: [], requirements: [ { id: '5124', parentId: 'bayes_rule', childId: 'bayes_rule_probability_proof', type: 'requirement', creatorId: 'NateSoares', createdAt: '2016-07-10 21:27:49', level: '2', isStrong: 'true', everPublished: 'true' }, { id: '5125', parentId: 'conditional_probability', childId: 'bayes_rule_probability_proof', type: 'requirement', creatorId: 'NateSoares', createdAt: '2016-07-10 21:27:56', level: '2', isStrong: 'true', everPublished: 'true' }, { id: '5126', parentId: 'probability', childId: 'bayes_rule_probability_proof', type: 'requirement', creatorId: 'NateSoares', createdAt: '2016-07-10 21:28:18', level: '2', isStrong: 'true', everPublished: 'true' }, { id: '5636', parentId: 'math2', childId: 'bayes_rule_probability_proof', type: 'requirement', creatorId: 'AlexeiAndreev', createdAt: '2016-07-26 16:56:09', level: '2', isStrong: 'true', everPublished: 'true' }, { id: '5768', parentId: 'bayes_rule_probability', childId: 'bayes_rule_probability_proof', type: 'requirement', creatorId: 'AlexeiAndreev', createdAt: '2016-08-01 23:45:00', level: '2', isStrong: 'true', everPublished: 'true' } ], subjects: [ { id: '5637', parentId: 'bayes_rule_probability', childId: 'bayes_rule_probability_proof', type: 'subject', creatorId: 'AlexeiAndreev', createdAt: '2016-07-26 16:57:32', level: '2', isStrong: 'false', everPublished: 'true' }, { id: '5638', parentId: 'bayes_rule', childId: 'bayes_rule_probability_proof', type: 'subject', creatorId: 'AlexeiAndreev', createdAt: '2016-07-26 16:58:20', level: '2', isStrong: 'false', everPublished: 'true' }, { id: '5641', parentId: 'bayes_rule_proof', childId: 'bayes_rule_probability_proof', type: 'subject', creatorId: 'AlexeiAndreev', createdAt: '2016-07-26 17:07:57', level: '2', isStrong: 'false', everPublished: 'true' }, { id: '5769', parentId: 'bayes_rule_probability_proof', childId: 'bayes_rule_probability_proof', type: 'subject', creatorId: 'AlexeiAndreev', createdAt: '2016-08-01 23:45:42', level: '2', isStrong: 'true', everPublished: 'true' } ], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: { '554': [ '555' ], '1lz': [ '1xr', '1yc', '1zh', '1zm', '220', '552', '6cj' ] }, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19959', pageId: 'bayes_rule_probability_proof', userId: 'EliezerYudkowsky', edit: '3', type: 'newEdit', createdAt: '2016-10-08 20:26:55', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18228', pageId: 'bayes_rule_probability_proof', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-08-03 16:34:51', auxPageId: 'needs_clickbait_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18191', pageId: 'bayes_rule_probability_proof', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-08-02 18:56:08', auxPageId: 'b_class_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18190', pageId: 'bayes_rule_probability_proof', userId: 'EricBruylant', edit: '2', type: 'newEdit', createdAt: '2016-08-02 18:54:43', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'added a link' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17961', pageId: 'bayes_rule_probability_proof', userId: 'AlexeiAndreev', edit: '0', type: 'newTeacher', createdAt: '2016-08-01 23:45:42', auxPageId: 'bayes_rule_probability_proof', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17962', pageId: 'bayes_rule_probability_proof', userId: 'AlexeiAndreev', edit: '0', type: 'newSubject', createdAt: '2016-08-01 23:45:42', auxPageId: 'bayes_rule_probability_proof', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17960', pageId: 'bayes_rule_probability_proof', userId: 'AlexeiAndreev', edit: '0', type: 'newRequirement', createdAt: '2016-08-01 23:45:00', auxPageId: 'bayes_rule_probability', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17543', pageId: 'bayes_rule_probability_proof', userId: 'AlexeiAndreev', edit: '0', type: 'newSubject', createdAt: '2016-07-26 17:07:58', auxPageId: 'bayes_rule_proof', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17538', pageId: 'bayes_rule_probability_proof', userId: 'AlexeiAndreev', edit: '0', type: 'newSubject', createdAt: '2016-07-26 16:58:21', auxPageId: 'bayes_rule', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17536', pageId: 'bayes_rule_probability_proof', userId: 'AlexeiAndreev', edit: '0', type: 'newSubject', createdAt: '2016-07-26 16:57:32', auxPageId: 'bayes_rule_probability', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17534', pageId: 'bayes_rule_probability_proof', userId: 'AlexeiAndreev', edit: '0', type: 'newRequirement', createdAt: '2016-07-26 16:56:09', auxPageId: 'math2', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16408', pageId: 'bayes_rule_probability_proof', userId: 'NateSoares', edit: '0', type: 'newRequirement', createdAt: '2016-07-10 21:28:18', auxPageId: 'probability', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16407', pageId: 'bayes_rule_probability_proof', userId: 'NateSoares', edit: '0', type: 'newRequirement', createdAt: '2016-07-10 21:27:57', auxPageId: 'conditional_probability', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16406', pageId: 'bayes_rule_probability_proof', userId: 'NateSoares', edit: '0', type: 'newRequirement', createdAt: '2016-07-10 21:27:49', auxPageId: 'bayes_rule', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15905', pageId: 'bayes_rule_probability_proof', userId: 'NateSoares', edit: '0', type: 'newParent', createdAt: '2016-07-07 03:20:42', auxPageId: 'bayes_rule_probability', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15889', pageId: 'bayes_rule_probability_proof', userId: 'NateSoares', edit: '0', type: 'newParent', createdAt: '2016-07-07 01:41:52', auxPageId: 'bayes_rule_proof', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15887', pageId: 'bayes_rule_probability_proof', userId: 'NateSoares', edit: '1', type: 'newEdit', createdAt: '2016-07-07 01:41:50', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }