{ localUrl: '../page/bayes_rule_proof.html', arbitalUrl: 'https://arbital.com/p/bayes_rule_proof', rawJsonUrl: '../raw/1xr.json', likeableId: 'JoaqunIvona', likeableType: 'page', myLikeValue: '0', likeCount: '3', dislikeCount: '0', likeScore: '3', individualLikes: [ 'EricBruylant', 'NateSoares', 'JacksonFriess' ], pageId: 'bayes_rule_proof', edit: '23', editSummary: '', prevEdit: '22', currentEdit: '23', wasPublished: 'true', type: 'wiki', title: 'Proof of Bayes' rule', clickbait: 'Proofs of Bayes' rule, with graphics', textLength: '3713', alias: 'bayes_rule_proof', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'NateSoares', editCreatedAt: '2016-07-10 21:24:01', pageCreatorId: 'EliezerYudkowsky', pageCreatedAt: '2016-02-09 20:59:26', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '1965', text: 'Bayes' rule (in the [1x5 odds form]) says that, for every pair of hypotheses $H_i$ and $H_j$ and piece of evidence $e,$\n\n$$\\dfrac{\\mathbb P(H_i)}{\\mathbb P(H_j)} \\times \\dfrac{\\mathbb P(e \\mid H_i)}{\\mathbb P(e \\mid H_j)} = \\dfrac{\\mathbb P(H_i \\mid e)}{\\mathbb P(H_j \\mid e)}.$$\n\nBy the definition of [1rj conditional probability], $\\mathbb P(e \\land H)$ $=$ $\\mathbb P(H) \\cdot \\mathbb P(e \\mid H),$ so\n\n$$ \\dfrac{\\mathbb P(H_i)}{\\mathbb P(H_j)} \\times \\dfrac{\\mathbb P(e\\mid H_i)}{\\mathbb P(e\\mid H_j)} = \\dfrac{\\mathbb P(e \\wedge H_i)}{\\mathbb P(e \\wedge H_j)} $$\n\nDividing both the numerator and the denominator by $\\mathbb P(e),$ we have\n\n$$ \\dfrac{\\mathbb P(e \\wedge H_i)}{\\mathbb P(e \\wedge H_j)} = \\dfrac{\\mathbb P(e \\wedge H_i) / \\mathbb P(e)}{\\mathbb P(e \\wedge H_j) / \\mathbb P(e)} $$\n\nInvoking the definition of conditional probability again,\n\n$$ \\dfrac{\\mathbb P(e \\wedge H_i) / \\mathbb P(e)}{\\mathbb P(e \\wedge H_j) / \\mathbb P(e)} = \\dfrac{\\mathbb P(H_i\\mid e)}{\\mathbb P(H_j\\mid e)}.$$\n\nDone.\n\n---\n\nOf note is the equality\n\n$$\\frac{\\mathbb P(H_i\\mid e)}{\\mathbb P(H_j\\mid e)} = \\frac{\\mathbb P(H_i \\land e)}{\\mathbb P(H_j \\land e)},$$\n\nwhich says that the posterior odds (on the left) for $H_i$ (vs $H_j$) given evidence $e$ is exactly equal to the prior odds of $H_i$ (vs $H_j$) in the parts of $\\mathbb P$ where $e$ was already true. $\\mathbb P(x \\land e)$ is the amount of probability mass that $\\mathbb P$ allocated to worlds where both $x$ and $e$ are true, and the above equation says that after observing $e,$ your belief in $H_i$ relative to $H_j$ should be equal to $H_i$'s odds relative to $H_j$ _in those worlds._ In other words, Bayes' rule can be interpreted as saying: "Once you've seen $e$, simply throw away all probability mass except the mass on worlds where $e$ was true, and then continue reasoning according to the remaining probability mass." See also [1y6].\n\n## Illustration (using the Diseasitis example)\n\nSpecializing to the [22s Diseasitis] problem, using red for sick, blue for healthy, and + signs for positive test results, the proof above can be visually depicted as follows:\n\n![bayes venn](https://i.imgur.com/YBc2nYo.png?0)\n\nThis visualization can be read as saying: The ratio of the initial sick population (red) to the initial healthy population (blue), times the ratio of positive results (+) in the sick population to positive results in the blue population, equals the ratio of the positive-and-red population to positive-and-blue population. Thus we can divide both into the proportion of the whole population which got positive results (grey and +), yielding the posterior odds of sick (red) vs healthy (blue) among only those with positive results.\n\n\nThe corresponding numbers are:\n\n$$\\dfrac{20\\%}{80\\%} \\times \\dfrac{90\\%}{30\\%} = \\dfrac{18\\%}{24\\%} = \\dfrac{0.18 / 0.42}{0.24 / 0.42} = \\dfrac{3}{4}$$\n\nfor a final probability $\\mathbb P(sick)$ of $\\frac{3}{7} \\approx 43\\%.$\n\n## Generality\n\nThe [1x5 odds] and [1zm proportional] forms of Bayes' rule talk about the *relative* probability of two hypotheses $H_i$ and $H_j.$ In the particular example of Diseasitis it happens that [1rd every patient is either sick or not-sick], so that we can [1rk normalize] the final odds 3 : 4 to probabilities of $\\frac{3}{7} : \\frac{4}{7}.$ However, the proof above shows that even if we were talking about two different possible diseases and their total prevalances did not sum to 1, the equation above would still hold between the *relative* prior odds for $\\frac{\\mathbb P(H_i)}{\\mathbb P(H_j)}$ and the *relative* posterior odds for $\\frac{\\mathbb P(H_i\\mid e)}{\\mathbb P(H_j\\mid e)}.$\n\nThe above proof can be specialized to the probabilistic case; see [56j].\n\n', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '2016-02-21 13:17:05', hasDraft: 'false', votes: [], voteSummary: [ '0', '0', '0', '0', '0', '0', '0', '0', '0', '0' ], muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'true', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: { Summary: 'Bayes' rule (in the [1x5 odds form]) says that, for every pair of hypotheses $H_i$ and $H_j$ and piece of evidence $e,$' }, creatorIds: [ 'EliezerYudkowsky', 'NateSoares' ], childIds: [ 'bayes_rule_probability_proof' ], parentIds: [ 'bayes_rule' ], commentIds: [], questionIds: [], tagIds: [ 'b_class_meta_tag' ], relatedIds: [], markIds: [], explanations: [ { id: '6510', parentId: 'bayes_rule_proof', childId: 'bayes_rule_odds_intro', type: 'subject', creatorId: 'EliezerYudkowsky', createdAt: '2016-10-01 05:33:20', level: '2', isStrong: 'true', everPublished: 'true' }, { id: '5183', parentId: 'bayes_rule_proof', childId: 'bayes_rule_proof', type: 'subject', creatorId: 'NateSoares', createdAt: '2016-07-10 23:38:40', level: '2', isStrong: 'true', everPublished: 'true' }, { id: '6500', parentId: 'bayes_rule_proof', childId: 'bayes_rule_fast_intro', type: 'subject', creatorId: 'EliezerYudkowsky', createdAt: '2016-09-29 04:41:48', level: '2', isStrong: 'true', everPublished: 'true' } ], learnMore: [ { id: '5641', parentId: 'bayes_rule_proof', childId: 'bayes_rule_probability_proof', type: 'subject', creatorId: 'AlexeiAndreev', createdAt: '2016-07-26 17:07:57', level: '2', isStrong: 'false', everPublished: 'true' } ], requirements: [ { id: '2095', parentId: 'conditional_probability', childId: 'bayes_rule_proof', type: 'requirement', creatorId: 'AlexeiAndreev', createdAt: '2016-06-17 21:58:56', level: '2', isStrong: 'true', everPublished: 'true' }, { id: '5118', parentId: 'bayes_rule', childId: 'bayes_rule_proof', type: 'requirement', creatorId: 'NateSoares', createdAt: '2016-07-10 21:13:31', level: '2', isStrong: 'true', everPublished: 'true' }, { id: '5119', parentId: 'math1', childId: 'bayes_rule_proof', type: 'requirement', creatorId: 'NateSoares', createdAt: '2016-07-10 21:13:50', level: '3', isStrong: 'true', everPublished: 'true' } ], subjects: [ { id: '5122', parentId: 'bayes_rule', childId: 'bayes_rule_proof', type: 'subject', creatorId: 'NateSoares', createdAt: '2016-07-10 21:27:11', level: '2', isStrong: 'false', everPublished: 'true' }, { id: '5183', parentId: 'bayes_rule_proof', childId: 'bayes_rule_proof', type: 'subject', creatorId: 'NateSoares', createdAt: '2016-07-10 23:38:40', level: '2', isStrong: 'true', everPublished: 'true' } ], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: { '1xr': [ '56j' ] }, learnMoreCoveredMap: { '1lz': [ '1yc', '1zh', '1zm', '220', '552', '56j', '6cj' ] }, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19807', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '0', type: 'newTeacher', createdAt: '2016-10-01 05:33:20', auxPageId: 'bayes_rule_odds_intro', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19750', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '0', type: 'newTeacher', createdAt: '2016-09-29 04:41:49', auxPageId: 'bayes_rule_fast_intro', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18225', pageId: 'bayes_rule_proof', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-08-03 16:32:34', auxPageId: 'b_class_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17970', pageId: 'bayes_rule_proof', userId: 'AlexeiAndreev', edit: '0', type: 'deleteSubject', createdAt: '2016-08-02 00:17:17', auxPageId: 'bayes_rule_odds', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17542', pageId: 'bayes_rule_proof', userId: 'AlexeiAndreev', edit: '0', type: 'newTeacher', createdAt: '2016-07-26 17:07:58', auxPageId: 'bayes_rule_probability_proof', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16548', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'newTeacher', createdAt: '2016-07-10 23:38:41', auxPageId: 'bayes_rule_proof', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16549', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'newSubject', createdAt: '2016-07-10 23:38:41', auxPageId: 'bayes_rule_proof', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16535', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'deleteRequiredBy', createdAt: '2016-07-10 23:00:57', auxPageId: 'bayes_guide_end', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16532', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'deleteRequiredBy', createdAt: '2016-07-10 22:59:04', auxPageId: 'bayes_guide_end', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16466', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'deleteRequiredBy', createdAt: '2016-07-10 21:58:02', auxPageId: 'bayes_rule_details', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16405', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'newSubject', createdAt: '2016-07-10 21:27:23', auxPageId: 'bayes_rule_odds', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16403', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'newSubject', createdAt: '2016-07-10 21:27:12', auxPageId: 'bayes_rule', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16399', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'deleteChild', createdAt: '2016-07-10 21:24:22', auxPageId: 'bayes_rule_proof_math1', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16398', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '23', type: 'newEdit', createdAt: '2016-07-10 21:24:01', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16394', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'newRequirement', createdAt: '2016-07-10 21:13:50', auxPageId: 'math1', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16393', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'deleteRequirement', createdAt: '2016-07-10 21:13:38', auxPageId: 'math3', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16391', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'newRequirement', createdAt: '2016-07-10 21:13:32', auxPageId: 'bayes_rule', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16380', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'deleteTeacher', createdAt: '2016-07-10 21:05:01', auxPageId: 'bayes_rule_proof_math1', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16213', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'deleteTeacher', createdAt: '2016-07-08 15:44:00', auxPageId: '1x9', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16174', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'deleteTeacher', createdAt: '2016-07-08 15:28:47', auxPageId: 'bayes_rule_odds_intro', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15898', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '22', type: 'newEdit', createdAt: '2016-07-07 01:47:55', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15891', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '21', type: 'newEdit', createdAt: '2016-07-07 01:42:56', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'Split off the probability proof, and cleaned up the notation a bit.' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15890', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'lensOrderChanged', createdAt: '2016-07-07 01:42:38', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15888', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '0', type: 'newChild', createdAt: '2016-07-07 01:41:52', auxPageId: 'bayes_rule_probability_proof', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15093', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '20', type: 'newEdit', createdAt: '2016-07-02 00:03:29', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15075', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '19', type: 'newEdit', createdAt: '2016-07-01 19:56:08', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15074', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '18', type: 'newEdit', createdAt: '2016-07-01 19:54:12', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '8107', pageId: 'bayes_rule_proof', userId: 'NateSoares', edit: '17', type: 'newEdit', createdAt: '2016-03-03 03:19:01', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '7593', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '16', type: 'newEdit', createdAt: '2016-02-22 21:23:35', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '7154', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '15', type: 'newRequiredBy', createdAt: '2016-02-16 05:35:38', auxPageId: 'bayes_rule_details', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6859', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '15', type: 'newTeacher', createdAt: '2016-02-11 04:03:41', auxPageId: 'bayes_rule_proof_math1', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6853', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '15', type: 'newChild', createdAt: '2016-02-11 04:02:43', auxPageId: 'bayes_rule_proof_math1', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6788', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '15', type: 'newEdit', createdAt: '2016-02-11 03:23:35', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6772', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '14', type: 'newTeacher', createdAt: '2016-02-11 03:08:49', auxPageId: 'bayes_rule_odds_intro', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6683', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '14', type: 'newEdit', createdAt: '2016-02-10 04:57:45', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6682', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '13', type: 'newEdit', createdAt: '2016-02-10 04:56:50', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6681', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '12', type: 'newEdit', createdAt: '2016-02-10 04:56:23', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6680', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '11', type: 'newEdit', createdAt: '2016-02-10 04:52:37', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6679', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '10', type: 'newEdit', createdAt: '2016-02-10 04:51:29', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6678', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '9', type: 'newEdit', createdAt: '2016-02-10 04:50:15', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6677', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '8', type: 'newEdit', createdAt: '2016-02-10 04:48:26', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6669', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '7', type: 'newEdit', createdAt: '2016-02-10 02:27:18', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6668', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '6', type: 'newEdit', createdAt: '2016-02-10 02:26:30', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6665', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '5', type: 'newEdit', createdAt: '2016-02-10 02:19:46', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6664', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '4', type: 'newEdit', createdAt: '2016-02-10 02:17:35', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6663', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '3', type: 'newEdit', createdAt: '2016-02-10 02:08:04', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6662', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '2', type: 'newEdit', createdAt: '2016-02-10 02:07:43', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6658', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '0', type: 'deleteTag', createdAt: '2016-02-10 01:56:09', auxPageId: 'stub_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6656', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '1', type: 'newSubject', createdAt: '2016-02-10 01:56:06', auxPageId: 'bayes_rule_proof', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6655', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '1', type: 'newTeacher', createdAt: '2016-02-10 01:56:06', auxPageId: 'bayes_rule_proof', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6654', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '1', type: 'newRequirement', createdAt: '2016-02-10 01:56:00', auxPageId: 'conditional_probability', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6652', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '1', type: 'newRequirement', createdAt: '2016-02-10 01:55:57', auxPageId: 'math3', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6619', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '1', type: 'newTeacher', createdAt: '2016-02-09 20:59:45', auxPageId: '1x9', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6618', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '1', type: 'newEdit', createdAt: '2016-02-09 20:59:26', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6617', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '0', type: 'newTag', createdAt: '2016-02-09 20:59:16', auxPageId: 'stub_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6615', pageId: 'bayes_rule_proof', userId: 'EliezerYudkowsky', edit: '0', type: 'newParent', createdAt: '2016-02-09 20:59:12', auxPageId: 'bayes_rule', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'true', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: { lessTechnical: { likeableId: '4111', likeableType: 'contentRequest', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '203', pageId: 'bayes_rule_proof', requestType: 'lessTechnical', createdAt: '2018-02-11 13:33:19' }, moreTechnical: { likeableId: '4074', likeableType: 'contentRequest', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '197', pageId: 'bayes_rule_proof', requestType: 'moreTechnical', createdAt: '2017-09-30 20:02:08' } } }