{
  localUrl: '../page/group_coset.html',
  arbitalUrl: 'https://arbital.com/p/group_coset',
  rawJsonUrl: '../raw/4j4.json',
  likeableId: '2754',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'group_coset',
  edit: '1',
  editSummary: '',
  prevEdit: '0',
  currentEdit: '1',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Group coset',
  clickbait: '',
  textLength: '1874',
  alias: 'group_coset',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-17 17:58:15',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-17 17:58:15',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '2',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '30',
  text: 'Given a subgroup $H$ of [-3gd] $G$, the *left cosets* of $H$ in $G$ are sets of the form $\\{ gh : h \\in H \\}$, for some $g \\in G$.\nThis is written $gH$ as a shorthand.\n\nSimilarly, the *right cosets* are the sets of the form $Hg = \\{ hg: h \\in H \\}$.\n\n# Examples\n%%%knows-requisite([497]):\n## Symmetric group\n\nIn $S_3$, the [-497] on three elements, we can list the elements as $\\{ e, (123), (132), (12), (13), (23) \\}$, using [49f cycle notation].\nDefine $A_3$ (which happens to have a name: the [-4hf]) to be the subgroup with elements $\\{ e, (123), (132) \\}$.\n\nThen the coset $(12) A_3$ has elements $\\{ (12), (12)(123), (12)(132) \\}$, which is simplified to $\\{ (12), (23), (13) \\}$.\n\nThe coset $(123)A_3$ is simply $A_3$, because $A_3$ is a subgroup so is closed under the group operation. $(123)$ is already in $A_3$.\n%%%\n\n[todo: more examples, with different requirements]\n\n# Properties\n\n- The left cosets of $H$ in $G$ [set_partition partition] $G$. ([4j5 Proof.])\n- For any pair of left cosets of $H$, there is a [499 bijection] between them; that is, all the cosets are all the same size. ([4j8 Proof.])\n\n# Why are we interested in cosets?\n\nUnder certain conditions (namely that the subgroup $H$ must be [4h6 normal]), we may define the [-quotient_group], a very important concept; see the page on [4j5 "left cosets partition the parent group"] for a glance at why this is useful.\n[todo: there must be a less clumsy way to do it]\n\nAdditionally, there is a key theorem whose usual proof considers cosets ([lagrange_theorem_on_subgroup_size Lagrange's theorem]) which strongly restricts the possible sizes of subgroups of $G$, and which itself is enough to classify all the groups of [3gg order] $p$ for $p$ [prime_number prime].\nLagrange's theorem also has very common applications in [-number_theory], in the form of the [fermat_euler_theorem Fermat-Euler theorem].',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [
    'left_cosets_partition_parent_group',
    'left_cosets_biject'
  ],
  parentIds: [
    'group_mathematics'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'formal_definition_meta_tag',
    'needs_clickbait_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17120',
      pageId: 'group_coset',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-07-19 02:02:53',
      auxPageId: 'definition_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17118',
      pageId: 'group_coset',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-19 02:02:52',
      auxPageId: 'formal_definition_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17117',
      pageId: 'group_coset',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-19 02:02:45',
      auxPageId: 'needs_clickbait_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13710',
      pageId: 'group_coset',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequiredBy',
      createdAt: '2016-06-17 21:24:38',
      auxPageId: 'lagrange_theorem_on_subgroup_size',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13621',
      pageId: 'group_coset',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequiredBy',
      createdAt: '2016-06-17 18:03:28',
      auxPageId: 'left_cosets_partition_parent_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13619',
      pageId: 'group_coset',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-17 17:58:15',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13590',
      pageId: 'group_coset',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newTag',
      createdAt: '2016-06-17 17:19:09',
      auxPageId: 'definition_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13589',
      pageId: 'group_coset',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-06-17 17:19:05',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'true',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}