{
localUrl: '../page/left_cosets_partition_parent_group.html',
arbitalUrl: 'https://arbital.com/p/left_cosets_partition_parent_group',
rawJsonUrl: '../raw/4j5.json',
likeableId: '2739',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'EricBruylant'
],
pageId: 'left_cosets_partition_parent_group',
edit: '3',
editSummary: '',
prevEdit: '2',
currentEdit: '3',
wasPublished: 'true',
type: 'wiki',
title: 'Left cosets partition the parent group',
clickbait: 'In a group, every element has a unique coset in which it lies, allowing us to compress some of the information about the group.',
textLength: '1738',
alias: 'left_cosets_partition_parent_group',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-06-28 09:29:03',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-06-17 17:42:42',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '24',
text: 'Given a [-3gd] $G$ and a subgroup $H$, the [4j4 left cosets] of $H$ in $G$ [set_partition partition] $G$, in the sense that every element of $g$ is in precisely one coset.\n\n# Proof\nFirstly, every element is in a coset: since $g \\in gH$ for any $g$.\nSo we must show that no element is in more than one coset.\n\nSuppose $c$ is in both $aH$ and $bH$.\nThen we claim that $aH = cH = bH$, so in fact the two cosets $aH$ and $bH$ were the same.\nIndeed, $c \\in aH$, so there is $k \\in H$ such that $c = ak$.\nTherefore $cH = \\{ ch : h \\in H \\} = \\{ akh : h \\in H \\}$.\n\nExercise: $\\{ akh : h \\in H \\} = \\{ ar : r \\in H \\}$.\n%%hidden(Show solution):\nSuppose $akh$ is in the left-hand side.\nThen it is in the right-hand side immediately: letting $r=kh$.\n\nConversely, suppose $ar$ is in the right-hand side.\nThen we may write $r = k k^{-1} r$, so $a k k^{-1} r$ is in the right-hand side; but then $k^{-1} r$ is in $H$ so this is exactly an object which lies in the left-hand side.\n%%\n\nBut that is just $aH$.\n\nBy repeating the reasoning with $a$ and $b$ interchanged, we have $cH = bH$; this completes the proof.\n\n# Why is this interesting?\n\nThe fact that the left cosets partition the group means that we can, in some sense, "compress" the group $G$ with respect to $H$.\nIf we are only interested in $G$ "up to" $H$, we can deal with the partition rather than the individual elements, throwing away the information we're not interested in.\n\nThis concept is most importantly used in defining the [-4tq].\nTo do this, the subgroup must be [4h6 normal] ([4h9 proof]).\nIn this case, the collection of cosets itself inherits a group structure from the parent group $G$, and the structure of the quotient group can often tell us a lot about the parent group.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '2',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: [
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0'
],
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'true',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens'
],
childIds: [],
parentIds: [
'group_coset'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [
{
id: '4509',
parentId: 'left_cosets_partition_parent_group',
childId: 'lagrange_theorem_on_subgroup_size_intuitive',
type: 'subject',
creatorId: 'PatrickStevens',
createdAt: '2016-06-28 09:30:01',
level: '1',
isStrong: 'false',
everPublished: 'true'
}
],
requirements: [
{
id: '4164',
parentId: 'group_coset',
childId: 'left_cosets_partition_parent_group',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
}
],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14674',
pageId: 'left_cosets_partition_parent_group',
userId: 'PatrickStevens',
edit: '0',
type: 'newTeacher',
createdAt: '2016-06-28 09:30:02',
auxPageId: 'lagrange_theorem_on_subgroup_size_intuitive',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14673',
pageId: 'left_cosets_partition_parent_group',
userId: 'PatrickStevens',
edit: '3',
type: 'newEdit',
createdAt: '2016-06-28 09:29:03',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13711',
pageId: 'left_cosets_partition_parent_group',
userId: 'PatrickStevens',
edit: '2',
type: 'newRequiredBy',
createdAt: '2016-06-17 21:24:38',
auxPageId: 'lagrange_theorem_on_subgroup_size',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13659',
pageId: 'left_cosets_partition_parent_group',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-06-17 19:16:30',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13622',
pageId: 'left_cosets_partition_parent_group',
userId: 'PatrickStevens',
edit: '1',
type: 'newRequirement',
createdAt: '2016-06-17 18:03:28',
auxPageId: 'group_coset',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13617',
pageId: 'left_cosets_partition_parent_group',
userId: 'PatrickStevens',
edit: '1',
type: 'newParent',
createdAt: '2016-06-17 17:58:15',
auxPageId: 'group_coset',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13604',
pageId: 'left_cosets_partition_parent_group',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-17 17:42:42',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13603',
pageId: 'left_cosets_partition_parent_group',
userId: 'PatrickStevens',
edit: '0',
type: 'deleteRequirement',
createdAt: '2016-06-17 17:42:22',
auxPageId: 'group_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13602',
pageId: 'left_cosets_partition_parent_group',
userId: 'PatrickStevens',
edit: '1',
type: 'newRequirement',
createdAt: '2016-06-17 17:42:20',
auxPageId: 'group_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}