{ localUrl: '../page/left_cosets_partition_parent_group.html', arbitalUrl: 'https://arbital.com/p/left_cosets_partition_parent_group', rawJsonUrl: '../raw/4j5.json', likeableId: '2739', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'EricBruylant' ], pageId: 'left_cosets_partition_parent_group', edit: '3', editSummary: '', prevEdit: '2', currentEdit: '3', wasPublished: 'true', type: 'wiki', title: 'Left cosets partition the parent group', clickbait: 'In a group, every element has a unique coset in which it lies, allowing us to compress some of the information about the group.', textLength: '1738', alias: 'left_cosets_partition_parent_group', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-06-28 09:29:03', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-06-17 17:42:42', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '24', text: 'Given a [-3gd] $G$ and a subgroup $H$, the [4j4 left cosets] of $H$ in $G$ [set_partition partition] $G$, in the sense that every element of $g$ is in precisely one coset.\n\n# Proof\nFirstly, every element is in a coset: since $g \\in gH$ for any $g$.\nSo we must show that no element is in more than one coset.\n\nSuppose $c$ is in both $aH$ and $bH$.\nThen we claim that $aH = cH = bH$, so in fact the two cosets $aH$ and $bH$ were the same.\nIndeed, $c \\in aH$, so there is $k \\in H$ such that $c = ak$.\nTherefore $cH = \\{ ch : h \\in H \\} = \\{ akh : h \\in H \\}$.\n\nExercise: $\\{ akh : h \\in H \\} = \\{ ar : r \\in H \\}$.\n%%hidden(Show solution):\nSuppose $akh$ is in the left-hand side.\nThen it is in the right-hand side immediately: letting $r=kh$.\n\nConversely, suppose $ar$ is in the right-hand side.\nThen we may write $r = k k^{-1} r$, so $a k k^{-1} r$ is in the right-hand side; but then $k^{-1} r$ is in $H$ so this is exactly an object which lies in the left-hand side.\n%%\n\nBut that is just $aH$.\n\nBy repeating the reasoning with $a$ and $b$ interchanged, we have $cH = bH$; this completes the proof.\n\n# Why is this interesting?\n\nThe fact that the left cosets partition the group means that we can, in some sense, "compress" the group $G$ with respect to $H$.\nIf we are only interested in $G$ "up to" $H$, we can deal with the partition rather than the individual elements, throwing away the information we're not interested in.\n\nThis concept is most importantly used in defining the [-4tq].\nTo do this, the subgroup must be [4h6 normal] ([4h9 proof]).\nIn this case, the collection of cosets itself inherits a group structure from the parent group $G$, and the structure of the quotient group can often tell us a lot about the parent group.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '2', maintainerCount: '2', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: [ '0', '0', '0', '0', '0', '0', '0', '0', '0', '0' ], muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'true', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens' ], childIds: [], parentIds: [ 'group_coset' ], commentIds: [], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [ { id: '4509', parentId: 'left_cosets_partition_parent_group', childId: 'lagrange_theorem_on_subgroup_size_intuitive', type: 'subject', creatorId: 'PatrickStevens', createdAt: '2016-06-28 09:30:01', level: '1', isStrong: 'false', everPublished: 'true' } ], requirements: [ { id: '4164', parentId: 'group_coset', childId: 'left_cosets_partition_parent_group', type: 'requirement', creatorId: 'AlexeiAndreev', createdAt: '2016-06-17 21:58:56', level: '1', isStrong: 'false', everPublished: 'true' } ], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14674', pageId: 'left_cosets_partition_parent_group', userId: 'PatrickStevens', edit: '0', type: 'newTeacher', createdAt: '2016-06-28 09:30:02', auxPageId: 'lagrange_theorem_on_subgroup_size_intuitive', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14673', pageId: 'left_cosets_partition_parent_group', userId: 'PatrickStevens', edit: '3', type: 'newEdit', createdAt: '2016-06-28 09:29:03', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13711', pageId: 'left_cosets_partition_parent_group', userId: 'PatrickStevens', edit: '2', type: 'newRequiredBy', createdAt: '2016-06-17 21:24:38', auxPageId: 'lagrange_theorem_on_subgroup_size', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13659', pageId: 'left_cosets_partition_parent_group', userId: 'PatrickStevens', edit: '2', type: 'newEdit', createdAt: '2016-06-17 19:16:30', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13622', pageId: 'left_cosets_partition_parent_group', userId: 'PatrickStevens', edit: '1', type: 'newRequirement', createdAt: '2016-06-17 18:03:28', auxPageId: 'group_coset', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13617', pageId: 'left_cosets_partition_parent_group', userId: 'PatrickStevens', edit: '1', type: 'newParent', createdAt: '2016-06-17 17:58:15', auxPageId: 'group_coset', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13604', pageId: 'left_cosets_partition_parent_group', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-06-17 17:42:42', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13603', pageId: 'left_cosets_partition_parent_group', userId: 'PatrickStevens', edit: '0', type: 'deleteRequirement', createdAt: '2016-06-17 17:42:22', auxPageId: 'group_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13602', pageId: 'left_cosets_partition_parent_group', userId: 'PatrickStevens', edit: '1', type: 'newRequirement', createdAt: '2016-06-17 17:42:20', auxPageId: 'group_mathematics', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }