{
  localUrl: '../page/left_cosets_partition_parent_group.html',
  arbitalUrl: 'https://arbital.com/p/left_cosets_partition_parent_group',
  rawJsonUrl: '../raw/4j5.json',
  likeableId: '2739',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'left_cosets_partition_parent_group',
  edit: '3',
  editSummary: '',
  prevEdit: '2',
  currentEdit: '3',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Left cosets partition the parent group',
  clickbait: 'In a group, every element has a unique coset in which it lies, allowing us to compress some of the information about the group.',
  textLength: '1738',
  alias: 'left_cosets_partition_parent_group',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-28 09:29:03',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-17 17:42:42',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '24',
  text: 'Given a [-3gd] $G$ and a subgroup $H$, the [4j4 left cosets] of $H$ in $G$ [set_partition partition] $G$, in the sense that every element of $g$ is in precisely one coset.\n\n# Proof\nFirstly, every element is in a coset: since $g \\in gH$ for any $g$.\nSo we must show that no element is in more than one coset.\n\nSuppose $c$ is in both $aH$ and $bH$.\nThen we claim that $aH = cH = bH$, so in fact the two cosets $aH$ and $bH$ were the same.\nIndeed, $c \\in aH$, so there is $k \\in H$ such that $c = ak$.\nTherefore $cH = \\{ ch : h \\in H \\} = \\{ akh : h \\in H \\}$.\n\nExercise: $\\{ akh : h \\in H \\} = \\{ ar : r \\in H \\}$.\n%%hidden(Show solution):\nSuppose $akh$ is in the left-hand side.\nThen it is in the right-hand side immediately: letting $r=kh$.\n\nConversely, suppose $ar$ is in the right-hand side.\nThen we may write $r = k k^{-1} r$, so $a k k^{-1} r$ is in the right-hand side; but then $k^{-1} r$ is in $H$ so this is exactly an object which lies in the left-hand side.\n%%\n\nBut that is just $aH$.\n\nBy repeating the reasoning with $a$ and $b$ interchanged, we have $cH = bH$; this completes the proof.\n\n# Why is this interesting?\n\nThe fact that the left cosets partition the group means that we can, in some sense, "compress" the group $G$ with respect to $H$.\nIf we are only interested in $G$ "up to" $H$, we can deal with the partition rather than the individual elements, throwing away the information we're not interested in.\n\nThis concept is most importantly used in defining the [-4tq].\nTo do this, the subgroup must be [4h6 normal] ([4h9 proof]).\nIn this case, the collection of cosets itself inherits a group structure from the parent group $G$, and the structure of the quotient group can often tell us a lot about the parent group.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '2',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: [
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0'
  ],
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'group_coset'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [
    {
      id: '4509',
      parentId: 'left_cosets_partition_parent_group',
      childId: 'lagrange_theorem_on_subgroup_size_intuitive',
      type: 'subject',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-28 09:30:01',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  requirements: [
    {
      id: '4164',
      parentId: 'group_coset',
      childId: 'left_cosets_partition_parent_group',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14674',
      pageId: 'left_cosets_partition_parent_group',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newTeacher',
      createdAt: '2016-06-28 09:30:02',
      auxPageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14673',
      pageId: 'left_cosets_partition_parent_group',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-06-28 09:29:03',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13711',
      pageId: 'left_cosets_partition_parent_group',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newRequiredBy',
      createdAt: '2016-06-17 21:24:38',
      auxPageId: 'lagrange_theorem_on_subgroup_size',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13659',
      pageId: 'left_cosets_partition_parent_group',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-17 19:16:30',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13622',
      pageId: 'left_cosets_partition_parent_group',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-06-17 18:03:28',
      auxPageId: 'group_coset',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13617',
      pageId: 'left_cosets_partition_parent_group',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-06-17 17:58:15',
      auxPageId: 'group_coset',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13604',
      pageId: 'left_cosets_partition_parent_group',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-17 17:42:42',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13603',
      pageId: 'left_cosets_partition_parent_group',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteRequirement',
      createdAt: '2016-06-17 17:42:22',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13602',
      pageId: 'left_cosets_partition_parent_group',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-06-17 17:42:20',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}