{
  localUrl: '../page/lagrange_theorem_on_subgroup_size_intuitive.html',
  arbitalUrl: 'https://arbital.com/p/lagrange_theorem_on_subgroup_size_intuitive',
  rawJsonUrl: '../raw/4vz.json',
  likeableId: '2868',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '2',
  dislikeCount: '0',
  likeScore: '2',
  individualLikes: [
    'EricBruylant',
    'PatrickStevens'
  ],
  pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
  edit: '9',
  editSummary: 'updated link to cardinality',
  prevEdit: '8',
  currentEdit: '9',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Lagrange theorem on subgroup size: Intuitive version',
  clickbait: 'Lagrange's theorem strongly restricts the size a subgroup of a group can be.',
  textLength: '4324',
  alias: 'lagrange_theorem_on_subgroup_size_intuitive',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'EricBruylant',
  editCreatedAt: '2016-08-27 14:11:30',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-28 09:00:01',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '50',
  text: '[summary: Lagrange's Theorem gives us a restriction on the size of a subgroup of a finite group: namely, subgroups have size dividing the parent group.]\n\nGiven a finite [-3gd] $G$, it may have many [576 subgroups].\nSo far, we know almost nothing about those subgroups; it would be great if we had some way of restricting them.\n\nAn example of such a restriction, which we do already know, is that a subgroup $H$ of $G$ has to have [3gg size] less than or equal to the size of $G$ itself.\nThis is because $H$ is contained in $G$, and if the set $X$ is contained in the set $Y$ then the size of $X$ is less than or equal to the size of $Y$.\n(This would have to be true for any reasonable definition of "size"; the [4w5 usual definition] certainly has this property.)\n\nLagrange's Theorem gives us a much more powerful restriction: not only is the size $|H|$ of $H$ less than or equal to $|G|$, but in fact $|H|$ divides $|G|$.\n\n%%hidden(Example: subgroups of the cyclic group on six elements):\n*A priori*, all we know about the subgroups of the [-47y] $C_6$ of order $6$ is that they are of order $1, 2, 3, 4, 5$ or $6$.\n\nLagrange's Theorem tells us that they can only be of order $1, 2, 3$ or $6$: there are no subgroups of order $4$ or $5$.\nLagrange tells us nothing about whether there *are* subgroups of size $1,2,3$ or $6$: only that if we are given a subgroup, then it is of one of those sizes.\n\nIn fact, as an aside, there are indeed subgroups of sizes $1,2,3,6$:\n\n- the subgroup containing only the identity is of order $1$\n- the "improper" subgroup $C_6$ is of order $6$\n- subgroups of size $2$ and $3$ are guaranteed by [4l6 Cauchy's theorem].\n\n%%\n\n# Proof\n\nIn order to show that $|H|$ divides $|G|$, we would be done if we could divide the elements of $G$ up into separate buckets of size $|H|$.\n\nThere is a fairly obvious place to start: we already have one bucket of size $|H|$, namely $H$ itself (which consists of some elements of $G$).\nCan we perhaps use this to create more buckets of size $|H|$?\n\nFor motivation: if we think of $H$ as being a collection of symmetries (which we can do, by [49b Cayley's Theorem] which states that all groups may be viewed as collections of symmetries), then we can create more symmetries by "tacking on elements of $G$".\n\nFormally, let $g$ be an element of $G$, and consider $gH = \\{ g h : h \\in H \\}$.\n\nExercise: every element of $G$ does have one of these buckets $gH$ in which it lies.\n%%hidden(Show solution):\nThe element $g$ of $G$ is contained in the bucket $gH$, because the identity $e$ is contained in $H$ and so $ge$ is in $gH$; but $ge = g$.\n%%\n\nExercise: $gH$ is a set of size $|H|$. %%note:More formally put, [-4j8].%%\n%%hidden(Show solution):\nIn order to show that $gH$ has size $|H|$, it is enough to match up the elements of $gH$ [499 bijectively] with the elements of $|H|$.\n\nWe can do this with the [-3jy] $H \\to gH$ taking $h \\in H$ and producing $gh$.\nThis has an [4sn inverse]: the function $gH \\to H$ which is given by pre-multiplying by $g^{-1}$, so that $gx \\mapsto g^{-1} g x = x$.\n%%\n\nNow, are all these buckets separate? Do any of them overlap?\n\nExercise: if $x \\in rH$ and $x \\in sH$ then $rH = sH$. That is, if any two buckets intersect then they are the same bucket. %%note:More formally put, [4j5].%%\n%%hidden(Show solution):\nSuppose $x \\in rH$ and $x \\in sH$.\n\nThen $x = r h_1$ and $x = s h_2$, some $h_1, h_2 \\in H$.\n\nThat is, $r h_1 = s h_2$, so $s^{-1} r h_1 = h_2$.\nSo $s^{-1} r = h_2 h_1^{-1}$, so $s^{-1} r$ is in $H$ by closure of $H$.\n\nBy taking inverses, $r^{-1} s$ is in $H$.\n\nBut that means $\\{ s h : h \\in H \\}$ and $\\{ r h : h \\in H\\}$ are equal.\nIndeed, we show that each is contained in the other.\n\n- if $a$ is in the right-hand side, then $a = rh$ for some $h$. Then $s^{-1} a = s^{-1} r h$; but $s^{-1} r$ is in $H$, so $s^{-1} r h$ is in $H$, and so $s^{-1} a$ is in $H$.\nTherefore $a \\in s H$, so $a$ is in the left-hand side.\n- if $a$ is in the left-hand side, then $a = sh$ for some $h$. Then $r^{-1} a = r^{-1} s h$; but $r^{-1} s$ is in $H$, so $r^{-1} s h$ is in $H$, and so $r^{-1} a$ is in $H$.\nTherefore $a \\in rH$, so $a$ is in the right-hand side.\n%%\n\nWe have shown that the "[4j4 cosets]" $gH$ are all completely disjoint and are all the same size, and that every element lies in a bucket; this completes the proof.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens',
    'EricBruylant'
  ],
  childIds: [],
  parentIds: [
    'lagrange_theorem_on_subgroup_size'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '4507',
      parentId: 'group_mathematics',
      childId: 'lagrange_theorem_on_subgroup_size_intuitive',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-28 08:59:26',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '4508',
      parentId: 'group_order',
      childId: 'lagrange_theorem_on_subgroup_size_intuitive',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-28 08:59:34',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [
    {
      id: '4509',
      parentId: 'left_cosets_partition_parent_group',
      childId: 'lagrange_theorem_on_subgroup_size_intuitive',
      type: 'subject',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-28 09:30:01',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '4510',
      parentId: 'left_cosets_biject',
      childId: 'lagrange_theorem_on_subgroup_size_intuitive',
      type: 'subject',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-28 09:30:17',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '4511',
      parentId: 'lagrange_theorem_on_subgroup_size_intuitive',
      childId: 'lagrange_theorem_on_subgroup_size_intuitive',
      type: 'subject',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-28 09:30:21',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  lenses: [],
  lensParentId: 'lagrange_theorem_on_subgroup_size',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19293',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'EricBruylant',
      edit: '9',
      type: 'newEdit',
      createdAt: '2016-08-27 14:11:30',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'updated link to cardinality'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18589',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-08-08 13:33:15',
      auxPageId: 'needs_clickbait_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18587',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '8',
      type: 'newEdit',
      createdAt: '2016-08-08 13:33:04',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18586',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '7',
      type: 'newEdit',
      createdAt: '2016-08-08 13:32:24',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17122',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-19 02:03:58',
      auxPageId: 'needs_clickbait_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14681',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-06-28 09:34:05',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14680',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-06-28 09:32:01',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14678',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newTeacher',
      createdAt: '2016-06-28 09:30:21',
      auxPageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14679',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newSubject',
      createdAt: '2016-06-28 09:30:21',
      auxPageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14677',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newSubject',
      createdAt: '2016-06-28 09:30:18',
      auxPageId: 'left_cosets_biject',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14675',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newSubject',
      createdAt: '2016-06-28 09:30:02',
      auxPageId: 'left_cosets_partition_parent_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14672',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-06-28 09:06:55',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14671',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-06-28 09:04:12',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14670',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-28 09:00:58',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14667',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-06-28 09:00:03',
      auxPageId: 'lagrange_theorem_on_subgroup_size',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14668',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-06-28 09:00:03',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14669',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-06-28 09:00:03',
      auxPageId: 'group_order',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14665',
      pageId: 'lagrange_theorem_on_subgroup_size_intuitive',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-28 09:00:01',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}